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Abstract

1.	 Structural diversity is an emerging dimension of biodiversity that accounts for 
size variations in organs among individuals in a community. Previous studies 
show significant effects of structural diversity on forest growth, but its effects 
on forest mortality are not known, particularly at a large scale.

2.	 To address this knowledge gap, we quantified structural diversity using stem 
structural diversity (SSD) based on both tree diameter and height. We obtained 
U.S. Forest Service Forest Inventory and Analysis (FIA) data from over 2400 
plots across southcentral U.S. forests that have suffered a recent drought. Using 
data from multiple sampling times, we calculated SSD and compared the relative 
importance of SSD, species diversity, functional diversity and other stand attrib-
utes in determining tree mortalities caused by fire, insects and diseases. We also 
used FIRETEC, a physics-based fire model, to test the effect of SSD on canopy 
consumption by fire.

3.	 Our results showed that (1) SSD was positively associated with tree mortalities 
caused by all three disturbances; (2) species richness was negatively associated 
with insect- and disease-caused mortalities; (3) functional diversity was nega-
tively associated with fire- and disease-caused mortalities and (4) more phylo-
genetically related species had more similar mortality rates by insect and disease 
but not fire. Moreover, the FIRETEC model showed increasing canopy consump-
tion by fire in stands with greater SSD.

4.	 Together, the different tree mortalities during drought associated with SSD 
more consistently than the other biodiversity metrics were evaluated.

5.	 Synthesis. Our results suggest that SSD could be considered in modelling forest 
dynamics and planning management to sustain forest health under disturbances.
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1  |  INTRODUC TION

Warm temperatures, superimposed on low precipitation, intensify 
drought magnitude and can cause severe tree mortality (Brodribb 
et al., 2020), which could be further exaggerated by fire, insect and 
disease disturbances. Drought can increase fire severity by de-
creasing fuel moisture (Holden et al., 2018; Littell et al., 2016; Ma 
et al., 2021) and contributing to greater fuel loads, that is, drought-
induced leaf-off events (Ruthrof et al., 2016). This increased fire se-
verity often leads to greater tree mortality (Stephens et al., 2018). 
Moreover, insect outbreaks following drought are widely observed 
(Anderegg et al., 2015; Canelles et al., 2021; Jactel et al., 2019), and 
several types of insects (especially bark beetles) preferentially at-
tack stressed trees or trees of specific characteristics, for example, 
large size (Koontz et al., 2021; Stephenson et al., 2019; Tai et al., 
2019). Drought–pathogen interactions may also amplify tree mor-
tality (Field et al., 2020; Wood et al., 2018). Therefore, it is crucial 
to understand variations in these tree mortalities across different 
stand conditions to improve projection of forest dynamics and 
management of forest resources under drought. As a critical stand 
condition, forest biodiversity affects tree mortality during drought 
as diverse forest ecosystems may be more resilient and resistant to 
disturbances (Jactel et al., 2021).

Forest biodiversity can be quantified by a range of metrics, rep-
resenting different perspectives (e.g. species, function), and to that 
end, structural diversity is an emerging metric from a structural per-
spective. It estimates niche partitioning from variation in size, shape 
and location of organs (in this case, the stem and canopy) among 
individuals (LaRue et al., 2019). For example, structural diversity 
can be quantified by stem structural diversity (SSD) that is defined 
in a two-dimensional space of diameter at breast height (DBH) and 
height (Figure 1), where the diversity is the mean distance of every 
individual in a sampling unit to the centroid of all individuals. Stands 
with low structural diversity (Figure 1a) had a shorter mean distance 
of each individual to the centroid than stands with high structural di-
versity (Figure 1b). In general, the more uniform the stand, the lower 
the structural diversity. Forest management based on structure di-
versity achieves increasing interests (Palik et al., 2021), and recent 
advances in vegetation models also focus on detailed representation 
of structural diversity when simulating forest dynamics (Fisher et al., 
2018). The above attentions on structural diversity stem from its 
significant effects on forest productivity in tropical (Ali et al., 2019), 
sub-tropical (Ali & Yan, 2017), temperate (Gough et al., 2019; Liang 
et al., 2007; Ullah et al., 2021) and boreal forests (Lei et al., 2009). 
Thus, structural diversity is also proposed to be a better biodiversity 
metric to study forest dynamics than other commonly used metrics 
(Mensah et al., 2020). Notably, although Liang et al. (2007) showed 
significant structural diversity effects on forest mortality, potential 
variation in the effects on mortality by different causes remains 
poorly understood.

Greater biodiversity is generally believed to mitigate tree mor-
tality given that it facilitates ecological niche partitioning among in-
dividuals to improve availability and sharing efficiency of resources 

among neighbours (Liang et al., 2015; Reich et al., 2012), particu-
larly when resources become limited, for example, during drought. 
However, structural diversity effects on tree mortality might be 
mixed. On the one hand, greater structural diversity may alleviate 
tree mortality due to increased tree vigour facing insect and disease 
disturbances. The increased vigour results from enhanced niche 
partitioning for resource uptake in stands of greater structural di-
versity (Palik et al., 2021). For example, greater structural diversity 
facilitates multi-layered canopies (Gough et al., 2019), potentially 
enhancing light interception particularly for understorey individu-
als, such as saplings, though a reduced light interception is also pro-
posed by Ali and Yan (2017). Meanwhile, greater structural diversity 
may interrupt fuel continuity, reducing fire spread and fire-induced 
mortality (Koontz et al., 2020). On the other hand, greater struc-
tural diversity may increase tree mortality because fuel continuity 
is potentially increased by more ladder fuels in stands of more di-
verse structure, leading to canopy fire (Hood et al., 2018). Greater 
structure diversity may also increase occurrences of insects and 
diseases caused by more colonization choices and concentration of 
insect pheromones in these stands (see more details in Section 4). 
Therefore, there is a critical need to examine the contrasting effects 
of structural diversity on tree mortality, particularly using large-
scale forest survey data across extensive spatial areas and a broad 
variety of woody species.

F I G U R E  1  Conceptual diagrams and related field photos of the 
comparison between loblolly pine stands of low (a) versus high 
(b) structural diversities. The conceptual diagram is based on a 
two-dimensional space defined by tree DBH and height. Each black 
point in the diagram represents DBH and height of an individual 
tree, and each empty point represents the centroid of all individuals 
in a sampling unit based on their average DBH and height. Each 
arrow represents the distance from the location of an individual to 
the centroid
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Focusing on the increase in tree mortality under drought condi-
tions, we quantified effects of structural diversity given the other 
factors related to forest biodiversity (e.g. species richness, func-
tional diversity), stand attributes (basal area, stand origin, stand age), 
tree morphological characteristics (e.g. tree height) and drought 
magnitude. We also considered the phylogenetic relatedness of 
the wide variety of species used in our analysis. We hypothesized 
that structural diversity is a significant predictor of fire-, insect- and 
disease-caused mortalities. Moreover, we used a physics-based fire 
model to test whether canopy consumption by fire increased with 
greater structural diversity.

2  |  MATERIAL S AND METHODS

2.1  |  Tree mortality data

We compiled data from the U.S. Forest Service Forest Inventory 
and Analysis (FIA) programme (https://www.fia.fs.fed.us/) for the 
state of Oklahoma, which experienced a severe drought from late 
2010 through mid-2015 (Basara et al., 2019). We extracted the data 
from FIA plots that experienced fire, insect or disease disturbances 
given two reasons: (1) In the other plots, the potential low mortal-
ity could be caused by factors unrelated to stand conditions, such 
as geographical barrier for insect and disease spread. Note that 
our study focused on explaining factors in tree morality under the 
disturbances instead of occurrences of these disturbances; (2) in-
cluding the other plots could make a complicated statistical analysis 
owing to zero-inflated datasets (Zuur et al., 2009). Individuals used 

in our analysis were measured at least twice (i.e. before and during 
or after the drought) and alive in the first measurement to make sure 
mortality occurred in the study period. We used a method similar to 
Bradford and Bell (2017) to confirm that initial diameter and diam-
eter change were reasonable (i.e. tree diameter changes less than 
−2.5 cm or greater than 12.5 cm were carefully inspected and ex-
cluded if other data, such as tree heights, species codes, etc., ap-
peared suspect or inconsistent). Our analysis included 25,099 trees 
(including 2954 dead trees) from 2439 plots (called subplots in FIA; 
plot radius is ~7.5 m) (Figure 2). The mortality cause of each dead 
tree is available from the FIA database (Burrill et al., 2018). Of the 
dead trees used in this study, 37.7% were coded as disease-caused 
mortality, 14.7% were coded as fire-caused mortality and 4.1% were 
coded as insect-caused mortality. The remaining dead trees (43.4%) 
were coded as dying from competition or extreme weather (e.g. 
wind damage).

2.2  |  Structural diversity

Multiple structural measures were used to calculate structural diver-
sity. For example, structural diversity can be calculated by canopy 
measurements with ground-based Lidar (Gough et al., 2020; LaRue 
et al., 2020), but the limited availability of Lidar data impedes ap-
plication to understanding large-scale forest dynamics. Commonly 
available measures, for example, diameter at breast height (DBH) 
and height, have also been used to calculate structural diversity, 
but these metrics only focus on variation in one dimension (Storch 
et al., 2018). Given different eco-physiological functions of DBH and 

F I G U R E  2  Distribution of FIA plots in Oklahoma used in this study. Plots cover five ecoregions characterized by forest ecosystems with 
a broad range of species, drought magnitudes and stand conditions. Note that a few plots outside the above ecoregions were used because 
they are still forested plots measured in the FIA programme. The inset map denotes the location of Oklahoma (highlighted in red) in the 
contiguous U.S.

https://www.fia.fs.fed.us/
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height, both measures should be considered in analysing structural 
diversity effects. However, potential collinearity between DBH and 
height makes it difficult to include both factors in a single model. 
Therefore, we introduce a metric, termed stem structural diversity 
(SSD), to estimate structural diversity simultaneously considering 
DBH and height. SSD is calculated similarly to functional dispersion, 
which estimates functional diversity with multiple functional traits 
(Laliberté & Legendre, 2010). SSD calculates the mean distance of 
every individual in a sampling plot to the centroid of all individuals 
in a two-dimensional space defined by DBH and height as explained 
above in Figure 1.

2.3  |  Other predictors of tree mortality

Predictors of tree mortality consisted of variables at both individual 
tree and stand levels. At the individual tree level, we used tree height 
as a predictor of tree mortality. We calculated stand-level predic-
tors per FIA subplot because trees in one subplot likely share the 
same conditions (e.g. disturbance history, soil characteristics, micro-
climate) (Burrill et al., 2018). The stand-level predictors include basal 
area, stand age, stand origin, species diversity, functional diversity, 
structural diversity and drought magnitude. Stand age was used as a 
predictor because physiological functions (e.g. photosynthesis rates) 
decline as trees age, resulting in increased susceptibility to insect 
and disease infestation which can contribute to eventual mortality. 
Meanwhile, because structural diversity may vary with age, it is im-
portant to test the correlation between age and structural diversity 
when understanding structural diversity effects on tree mortality. 
Note that tree age is not measured in most trees, so stand age (or 
age of dominant trees) was used in previous studies based on large-
scale survey data (Luo et al., 2020). We also included stand origin 
(i.e. natural or planted stand) to consider management effects on 
forest dynamics. Species diversity was calculated as species rich-
ness, that is, number of species per unit area. Note that Shannon's 
Index was also considered, but it did not improve model fitting. 
Functional diversity was calculated as functional dispersion using 
the r package ‘fd’ (Laliberté et al., 2015) and based on six functional 
traits: specific leaf area, leaf carbon: nitrogen ratio, wood density, 
leaf phenology type (i.e. evergreen vs. deciduous), maximum height 
and nitrogen fixation ability. These traits are related to plant growth 
under drought (Peìrez-Harguindeguy et al., 2013; Zhang et al., 2021). 
Other drought-related traits were not considered in our study, such 
as water potential value inducing 50% loss of maximum hydraulic 
conductance (P50), given their limited availability for the wide va-
riety of species studied. These functional trait data were extracted 
from the TRY database (Kattge et al., 2020). When extracting data, 
we first considered trait data from the study region. For species or 
traits with missing values, we expanded to data sources outside the 
above region. We calculated stem structural diversity using a simi-
lar approach to functional dispersion based on stem height and di-
ameter (diameter at breast height). Basal area was calculated as the 
cross-sectional area of tree stems per area. We used mean monthly 

climate water deficit (CWD) between dates of two repeated forest 
surveys to quantify drought magnitude. Higher values of CWD indi-
cate increased drought stress on plants (Stephenson, 1998). CWD 
is suggested to be a better indicator of plant drought stress than 
other indices, such as SPEI and PSDI (Zang et al., 2020). CWD was 
extracted from the TerraClimate database (http://www.clima​tolog​
ylab.org/terra​clima​te.html) (Abatzoglou et al., 2018).

2.4  |  Physics-based fire behaviour model 
simulations

We employed FIRETEC, a physics-based computation fluid dynamics 
model of fire behaviour and fire–atmosphere interactions, to test the 
effect of SSD on canopy consumption by fire. FIRETEC incorporates 
the macroscale effects (~1–10 m) of combustion, radiation, convec-
tive heat transfer and aerodynamic drag. A detailed description of 
the physical and chemical formulations of FIRETEC can be found in 
Linn and Harlow (1998) and Linn et al. (2002). We chose FIRETEC 
to perform this analysis because it has been used to model canopy-
fire spread (Hoffman et al., 2016), as well as evaluate sensitivities of 
fire spread to perturbation in atmospheric conditions (Jonko et al., 
2021) and vegetation structure (Atchley et al., 2021). We used the 
model to simulate fire spread through 10 forest stands. Each stand 
has 1894 loblolly pine trees spread across a 400 m × 400 m area. The 
DBH of trees in a stand were simulated using normal distributions 
with a same mean (40 cm) but different standard deviation (from 1 to 
10) among different stands. Thus, the 10 stands had the same mean 
tree size but different structural diversity. Tree height, height to can-
opy and crown radius of each tree were then calculated using allo-
metric equations and parameter values for loblolly pine in southern 
forests of the United States (Keyser, 2020). Allometric equations are 
widely used to quantify relationship between different tree organs 
for a wide variety of species, thus stand structure can be well repre-
sented in our simulation. Details of these input data can be found in 
Figure S1. All other model inputs, including surface fuel character-
istics, surface and canopy fuel moisture, and initial wind conditions, 
were consistent among the stands.

2.5  |  Statistical analyses

We used generalized linear mixed models to analyse tree mortality 
(dead tree = 1, alive tree = 0) caused by fire, insect and disease. 
We first standardized the predictors (average = 0 and SD = 1) to 
make slopes of these predictors comparable in the models. To 
remove multicollinear predictors, we used the variance inflation 
factor (VIF) >10 as a standard to identify predictors with strong 
multicollinearity (Table S1; James et al., 2013), and the VIF val-
ues were calculated using r package ‘car’ (Fox & Weisberg, 2019). 
We also tested quadratic terms of the quantitative factors stud-
ied, but all the terms were not significant. The model formulation 
of fire-, insect- and disease-caused mortalities of the ith tree of 

http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
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the jth species in the kth plot are shown in Equations 1–3, re-
spectively. Because multiple species were included in our mod-
els, we accounted for dependence (e.g. phylogenetic relatedness) 
among species by adding species (both phylogenetic and non-
phylogenetic components) as random factors. There are 26 spe-
cies in total covered by our study: 24 were already in Smith and 
Brown (2018), and the other two were added to the Smith and 
Brown phylogeny at the basal node of co-genera species. The de-
rived phylogeny is ultrametric.

where Mfire,i,j,k, Minsect,i,j,k and Mdisease,i,j,k were mortality probability of 
the ith tree of the jth species in the kth plot caused by fire, insect and 
disease, respectively. HTi,j,k was the tree height of the ith tree of the jth 
species in the kth plot. BAj was the basal area of the jth plot. SAj was 
the stand age of the jth plot. SOj was the stand origin of the jth plot. SDj 
was the stand diversity of the jth plot. FDj was the functional diversity 
of the jth plot. SSDj was the stem structural diversity of the jth plot. 
Dryj was the drought magnitude of the jth plot. �j was the residual for 
the jth species and included both phylogenetic and non-phylogenetic 
relatedness.

Assumptions of linearity, equal variance and normality were 
examined by the residual plots along the predictors, fitted values 
and the normal quantile plot, respectively. We built the multiple 
logistic regression models with the random effects using r pack-
age ‘phyr’ (Li et al., 2020), and all analyses were considered signifi-
cant at α = 0.05. We used a general additive model to analyse the 
relation between stem structural diversity and percent of canopy 
consumptions. The model was built by r package ‘mgcv’ (Wood, 
2021).

3  |  RESULTS

3.1  |  Significant factors contributing to fire-, 
insect- and disease-caused mortalities

Our fire model had explanatory power (or R2) of 24.8% and predic-
tion power (or AUC, area under curve) of 84.7%. SSD, basal area 
and CWD were positively associated with fire-caused mortality, but 
plots with greater tree height and functional diversity had signifi-
cantly less mortality (Figure 3a). The R2 and AUC of the insect model 
were 44.9% and 94.9%, respectively. Higher SSD increased the tree 
mortality, but greater species richness and basal area decreased the 
tree mortality (Figure 3b). The R2 and AUC of the disease model were 
19.5% and 79.8%, respectively. Higher SSD, basal area and stand age 
increased the tree mortality, but greater species richness and func-
tional diversity decreased the mortality (Figure 3c).

3.2  |  Phylogenetic and non-phylogenetic 
components of random effects

Tree mortality caused by fire did not show any evidence for the phy-
logenetic component of random intercepts of species (estimated 
variance ≈ 0, p = 1, Figure 4a), suggesting that the variation in fire-
caused mortality was largely independent with their evolutionary 
history. The non-significant phylogenetic component is shown in 
Figure 4b where the variation in the fire-caused mortality was rela-
tively similar among species, instead of being clustered in specific 
species group. On the other hand, both insect- and disease-caused 
mortalities had a strong phylogenetic component of random inter-
cepts of species (estimated variances  =  1.9 and 0.3, respectively, 
both p < 0.001, Figure 4a) suggesting that closely related species had 
similar mortality. The significant phylogenetic component of insect- 
and disease-caused mortalities is shown in Figure 4b where both 
Pinus species exhibited higher mortality by insects, and Quercus spe-
cies were subject to higher mortality by disease than other species.

3.3  |  Effect of stem structural diversity on canopy 
consumption by fire

FIRETEC simulation yielded a nonlinear relationship between stem 
structural diversity and canopy consumption by fire. The consump-
tion decreased slightly at lower SSD values and then increased at 
higher SSD (Figure 5a). The smoother for structural diversity used in 
the general additive model was significant (p = 0.0002, Figure 5a), 
and the model explained 89.6% variation in consumption. Figure 5b 
shows the visualizations of fires simulated by FIRETEC for two of the 
10 simulated stands. Stand 1 had the lowest SSD value, while stand 
10 had the highest SSD. Compared to stand 1, stand 10 had more 
intense canopy fire and larger burning area at the same time during 
the simulation.

4  |  DISCUSSION

4.1  |  SSD was positively associated with tree 
mortality caused by all three disturbances

During the recent drought in Oklahoma, our study showed that fire-
caused tree mortality increased in forest stands with higher SSD. 
Higher SSD indicates greater variation in stem size across individuals 
in a forest stand, and the high variation may lead to an increase in 
ladder fuels (or fire ladders) facilitating canopy fire (or torching) that 
directly causes tree mortality (Hood et al., 2018). In contrast, higher 
structural diversity, derived from Normalized Difference Vegetation 
Index (NDVI), was associated with reduced fire-induced tree mortal-
ity possibly by interrupting fuel continuity in Koontz et al. (2020). 
Note that we quantified structural diversity using different meas-
ures than Koontz et al. (2020). Stem height and diameter used in 
our study may be a more appropriate measure of structural diversity 

(1)Mfire,i,j,k = HTi,j,k + BAk + SOk + SDk + FDk + SSDk + Dryk + �j ,

(2)Minsect,i,j,k = BAk + SOk + SDk + FDk + SSDk + �j ,

(3)

Mdisease,i,j,k = HTi,j,k + BAk + SAk + SOk + SDk + FDk + SSDk + Dryk + �j
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than NDVI because NDVI is more sensitive to biochemical changes 
(e.g. chlorophyll content, foliar nitrogen content) than structural ones 
(e.g. leaf area index). For instance, Gamon et al. (1995) showed that 
NDVI was insensitive to structural changes particularly in stands of 
high leaf area indices. Furthermore, instead of detecting structural 
changes, some remote sensing-based vegetation indices were con-
founded by structure (Knyazikhin et al., 2013). Moreover, the above 
different SSD effects between our and previous studies may result 
from the nonlinear relation between SSD and canopy consumption. 

When SSD is low, consumption decreased with increasing SSD that 
may lead to the observations in Koontz et al. (2020). However, with 
high SSD, there is a positive effect of SSD on the canopy consump-
tion, leading to our observations of more fire mortality in stands 
with increasing SSD. Given these significant effects, SSD can be 
used to inform forest management to facilitate tree survival from 
fire. For example, thinning is widely used to mitigate fire impacts on 
forest growth by reducing stand density, partially due to its effect on 
fuel continuity (Stephens et al., 2018). In addition to stand density, 

F I G U R E  3  The slopes of significant predictors (p < 0.05) in the models of fire- (a), insect- (b) and disease (c)-caused mortalities. Error bars 
denote standard errors of the predictor slopes
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SSD could be another factor considered in thinning practices given 
the potential effect of SSD on the vertical spread of fire via ladder 
fuels. Neglecting the effect of ladder fuels potentially reduces the 
efficiency of forest management to facilitate forest adaptation to 
fire disturbance.

Our study also showed increased insect- and disease-caused 
mortalities in forests with higher SSD, and their reasons are likely 

complex. First, the insect damage widely occurred on Pinus species 
in our study and this insect guild is dominated by bark beetles both 
numerically and in terms of impact. Notably, a parabolic relationship 
exists between age and tree susceptibility to bark beetles because 
young trees do not have thick enough phloem where beetles can 
establish, while old trees may have bark that is too thick to be colo-
nized by beetles (Ylioja et al., 2005). Thus, both very young and very 

F I G U R E  4  (a) Estimated interspecific variances of mortality caused by the three disturbances. The black bars represent non-phylogenetic 
variance, while the grey bars represent phylogenetic variance. p values denote significance of the random effects based on likelihood ratio 
tests. (b) A phylogenetic tree of 26 species studied and their probabilities of mortality caused by F (fire), I (insect) and D (disease)
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old stands may not be suitable for beetle establishment. Meanwhile, 
these stands were more uniform, that is, stands of low SSD were 
characterized by small (<10  cm) or large (>30  cm) mean diameter 
(Figure S2.A) and young (<40  year) or old (>100  year) stand age 
(Figure S2.B). In other words, low SSD stands may be less suitable 
to beetle establishment. Second, a higher SSD could reduce light 
transmittance to trees growing in the lower canopy (Ali & Yan, 2017), 
leading to light stress (Bourdier et al., 2016). Stressed trees tend be 
more susceptible to insects and pathogens than healthy ones (Coyle 
et al., 2015; Roberts et al., 2020); this pattern is well documented for 
tree mortality caused by both insects (e.g. D. ponderosae and D. fron-
talis) (Hood et al., 2016; Negrón et al., 2017) and diseases (Bendixsen 
et al., 2015; Costanza et al., 2020; McIntire et al., 2018). Third, there 
may also be a greater concentration of insect pheromones in for-
ests with higher SSD where the different sized trees are barriers to 
wind. The limited wind likely reduces pheromone dissipation which 
can help facilitate insect outbreaks. For example, overstocked pine 
stands are more susceptible to D. frontalis attacks (Nowak et al., 
2015) partially because pheromones emitted by adult beetles are 
not dissipated by prevailing winds (Thistle et al., 2004, 2011), thus 
lingering in the air and serving as attractants to other D. frontalis. 
The increased pheromone densities potentially lead to more insect 
attacks because some insects (e.g. secondary bark beetles) employ 
kairomone communication from host trees or other beetle species 
(Borden, 1989; Miller et al., 2011; Vité et al., 1972).

4.2  |  Species and functional diversity were 
negatively associated with tree mortality

We found fire-caused tree mortality was negatively correlated with 
functional diversity but not species diversity quantified by species 
richness. Functional diversity was calculated by plant functional 

traits that likely affect fuel flammability, such as specific leaf area, 
leaf carbon:nitrogen ratio and wood density (Alam et al., 2020; 
Grootemaat et al., 2015; Murray et al., 2013). A greater functional 
diversity of a stand increases the variation in fuel flammability, po-
tentially leading to interruption of fuel continuity. This interruption 
could reduce fire-caused mortality due to the impacts of fuel quality 
on fire severity (Walker et al., 2020). Notably, given the strong cor-
relation between remote sensing-based vegetation index (e.g. NDVI) 
and these functional traits (Asner et al., 2017), the aforementioned 
positive effects of NDVI-based diversity in Koontz et al. (2020) may 
result more from functional diversity than structural diversity.

The notion of increased mortality from insects (Jactel & 
Brockerhoff, 2007; Jactel et al., 2021) and disease (McCracken & 
Dawson, 1998) in forest stands with lower species and functional 
diversity is not new (Coyle et al., 2002). However, these effects are 
not straightforward, as many factors contribute to tree mortality, 
especially in a changing climate. For instance, the negative rela-
tionship between species richness and insect damage became less 
pronounced with increasing mean annual temperature (Poeydebat 
et al., 2021). However, we observed a significant negative effect of 
tree species diversity on insect-caused mortality using forest sur-
vey data measured during a drought period. Moreover, these effects 
may vary by species, for example, in contrast to preferred conifer 
species, the risk of bark beetle infestation for less preferred hosts 
is increased by higher species richness increases (Berthelot et al., 
2021). The effects are also contingent on diet breadth of specific in-
sects, for example, damage from specialist insects could be reduced 
in diverse stands owing to low host occurrence (Guo et al., 2019). 
Unfortunately, information on the specific insects causing damage 
is not available from the FIA dataset. Future studies could combine 
regular forest survey datasets with insect datasets to understand 
the effects of herbivore diet breadth (e.g. Guo et al., 2019) on tree 
mortality.

F I G U R E  5  (a) The nonlinear relation between stem structural diversity and percent of canopy consumed by fire. The regression line was 
fitted by a general additive model with span = 2.535, which was determined by the general additive model. (b) Visualizations of canopy fire 
and area burned in stands of the lowest (Stand 1) and highest (Stand 10) SSD



    |  681Journal of EcologyZHAI et al.

4.3  |  Tree phylogeny influenced mortality caused 
by insects and diseases

Fire, insect and disease differentially impacted phylogenetic-
related groups of trees. The fire impact was largely non-
phylogenetic, and different trees' mortality rates were largely 
independent suggesting that closely related species did not suffer 
similar mortality rates. This result makes ecological sense because 
fire acts like a general ‘herbivore’ (Bond & Keeley, 2005) and af-
fects all trees almost equally, particularly when there is high fire 
severity caused by drought exceeding fire tolerances of most spe-
cies. Conversely, insect-caused mortality showed a strong phylo-
genetic influence, indicating that closely related trees had very 
similar insect-caused mortality rates. For example, we found the 
high insect-caused mortality in Pinus species (Figure 3a) which 
likely contributed to the model results where the majority of vari-
ance was the phylogenetic component. Pinus species are suscep-
tible to bark beetles, and rates of bark beetle-caused mortality 
often increase when trees are stressed by drought (Huang et al., 
2020; Negrón et al., 2009; Netherer et al., 2019). Unlike fire, in-
sects tend to preferentially attack specific groups of plant species 
that likely have coevolved similar defensive responses over time 
(Jactel et al., 2021). Thus, it is not surprising that the phylogenetic 
component contributed to the majority of interspecific variation in 
insect-caused mortality.

While fire acts like a general ‘herbivore’ and insects are more 
host specific, disease seems to be in the middle of the gradient, with 
almost equal phylogenetic and non-phylogenetic components of in-
terspecific variation in the disease-caused mortality. Both compo-
nents were significantly different from zero, suggesting that some 
groups of trees responded independently regardless of their phy-
logenetic distances, while others' responses to disease showed a 
phylogenetic signal. Disease-caused mortality occurred mostly in 
Quercus species and Gleditsia triacanthos in our study (Figure 3a). 
Stressed and dying Quercus trees have been found to be attacked 
by Biscogniauxia fungi (Bendixsen et al., 2015; Freeman et al., 2019; 
Nugent et al., 2005), while G. triacanthos is known to be impacted 
by several fungal diseases (Bedker & Wingfield, 1983; Crowe et al., 
1982).

5  |  CONCLUSIONS

Manipulation of structural diversity has long been a consideration 
in forest management using variable retention and patch cutting 
as an alternative to clear-cutting (Franklin et al., 1997; Seymour 
et al., 2002). However, there can be lags in incorporating con-
cepts into management practice (Fahey et al., 2018) caused by 
knowledge gaps in understanding effects of structural diversity 
on forest dynamics. These knowledge gaps are partially addressed 
by our study showing the SSD effects on different tree mor-
talities during drought. Our study suggests reducing SSD could 
contribute to multiple benefits to alleviate tree mortality, such 

as constraining the formation of ladder fuels or facilitating wind 
spread to dissipate aerial pheromones. Notably, given the impact 
of aerial pheromones on secondary insects, SSD-based manage-
ment may be effective to mitigate outbreaks of secondary insect 
under drought, particularly when intensifying drought leads to 
more pest damage (Jactel et al., 2012). Benefits realized by reduc-
ing SSD could be further examined to improve the understanding 
of structural diversity. Future studies could focus on variations in 
forest ingrowth and growth with SSD to achieve a more holistic 
understanding of structural diversity effects on forest productiv-
ity. Our results showed that drought was significantly related to 
the fire-caused mortality, but not to the other mortalities. It agrees 
with preliminary results from another study of our team suggest-
ing non-significant direct effect of drought on forest growth, but 
significant indirect one through its effects on stand attributes, for 
example, structural diversity and basal area. The indirect drought 
effects are also found in Ouyang et al. (2021). Thus, there are still 
knowledge gaps for future studies related to mechanisms driving 
drought impacts on forest dynamics. There are other causes of 
mortality related to drought, for example, storm damage (Csilléry 
et al., 2017), that we did not evaluate. Storm damage could be also 
affected by structural diversity given its effects on wind speed, 
but this mortality cause has not been explicitly recorded in the FIA 
database. Thus, future studies could evaluate additional mortal-
ity causes to develop a better understanding of structural diver-
sity effects on tree mortality. Finally, with advancing technology 
and increasing data availability, future studies could consider 
additional factors not included in our study to improve the un-
derstanding of tree mortality in a changing climate, such as struc-
tural diversity quantified by canopy measures using Lidar sensors 
(Gough et al., 2020; LaRue et al., 2020).
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