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Abstract Short-rotation woody crops are an integral compo-
nent of regional and national energy portfolios, as well as
providing essential ecosystem services such as biomass sup-
plies, carbon sinks, clean water, and healthy soils. We review
recent USDA Forest Service Research and Development ef-
forts from the USDA Biomass Research Centers on the pro-
visioning of these ecosystem services from woody crop pro-
duction systems. For biomass, we highlight productivity and
yield potential, pest susceptibility, and bioenergy siting appli-
cations. We describe carbon storage in aboveground woody
biomass and studies assessing the provision of clean and
plentiful water. Soil protection and wildlife habitat are also
mentioned, in the context of converting lands from traditional
row-crop agriculture to woody production systems.
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Introduction

Prior to the Industrial Revolution, most societies depended on
trees for energy as well as other uses (e.g., building materials,
fodder, and medicinals). Wood was the primary energy source
in the USA for both residential (fuelwood) and industrial
(charcoal) purposes until the mid-nineteenth century [1]. As
late as 1900, wood provided 21% of energy consumption, but
declined to 5 % by 1950 [2]. The Organization of the
Petroleum Exporting Countries (OPEC) Oil Embargo of
1973–1974 caused a resurgence of interest in bioenergy from
wood. A Society of American Foresters Task Force Report [3]
estimated that dedicating 10% of the arable private land in the
USA to bioenergy plantations would add 4.5 quads (i.e., qua-
drillion BTUs) of energy to US production (estimated at
75 quads in 1976), with the potential to increase to 8.3 quads
if new technologywas used [4]. Since that time, the annual US
primary energy consumption has increased to 98.5 quads in
2014, with 4.8 quads (i.e., ∼5 % of the total energy consump-
tion) coming from renewable biomass [5]. According to the
baseline scenario of the US Billion-Ton Update [6], at US$60
per dry ton, energy crops [which include short-rotation woody
crops (SRWC) as well as perennial grasses and annual energy
crops] will have the potential to contribute 400 million dry
tons of biomass (i.e., ∼37 % of total) in 2030. This potential
increases to a range of 540–799 million dry tons of biomass
(i.e., ∼39–49 % of total) under the high-yield scenario, which
assumes a 2–4 % annual increase in yield.

One advantage of woody biomass for bioenergy is that it
can be produced on land marginal or unsuitable for commer-
cial agriculture; thus, it does not compete for land with food
crops. By one estimate, there are more than 2.0 million ha of
marginal land in the northeastern USA alone, thought to be
suitable mostly for willow (Salix spp.) [7]. In the Southeast,
econometric models of the potential of genetically modified
freeze-tolerant rose gum (Eucalyptus grandis Hill ex
Maiden)×Timor mountain gum (Eucalyptus urophylla S.T.
Blake) predicted an expansion of up to 1.1 million ha of
Eucalyptus plantations, replacing pine plantations and natural-
ly regenerated pine stands [8]. An assessment of lands suitable
for purpose-grown, short-rotation hybrid poplars (Populus
species and their hybrids, excluding the aspens) showed that

0.4 million ha were potentially available in Wisconsin and
Minnesota, representing nearly one third (i.e., 31 %) of the
land base across these states [9].

USDA Forest Service Biomass Research

The use of fast-growing forest tree species to produce biomass
for fuel, fodder, and building materials has a long history. For
example, Dickmann [10] traced the development of SRWC
from coppice systems in antiquity to the beginnings of struc-
tured genetic improvement with poplars in the early twentieth
century. Research programs on SRWC began in the 1960s;
50 years ago, the concept of silage sycamore (Platanus sp.)
was conceived in Georgia [11, 12]. The basic premise was to
grow woody crops in a fashion similar to agronomic crops,
with close spacing (1000–35,000 stems ha−1) and short rota-
tion cycles (1, 2, or 3 years). A series of hardwood plantations
was established, beginning in 1966 on a variety of sites. The
objectives were to screen species for differences in productiv-
ity and to evaluate different spacings and rotation lengths [13].
Although the original systems were impractical for most hard-
wood species [12], an even more densely planted system
termed woodgrass was proposed in the late 1970s for hybrid
poplar [14] and shrub willow [15], the latter of which is still
used today. The concept of short-rotation intensive culture
(SRIC) spread to other regions, spurred by the OPEC Oil
Embargo of 1973–1974. Many species, both hardwoods and
softwoods, have been investigated for bioenergy, fiber, timber
production, or some combination (Table 1). Two growth
characteristics, however, have dominated species choices
and favored hardwoods: rapid initial stem growth and coppic-
ing ability. However, certain species’ demand for specific site
requirements has worked against many hardwoods.

Three locations were instrumental for advancing USDA
Forest Service (USDA FS) research into biomass and
bioenergy: Stonevil le , MS (33.42°N, 90.90°W);
Rhinelander, WI (45.64°N, 89.47°W); and Lehigh Acres, FL
(26.67°N, 81.81°W). Researchers at these three locations and
others cooperated with university and industry colleagues on
breeding, testing, growing, harvesting, and processing (Fig. 1
and ESM Online Resource 1). While others have been tested,
Populus has been the most popular taxon for research on
SRWC [21] (Table 2). Populus spp. have been widely studied
and planted operationally because of their rapid juvenile
growth, ease of hybridization, and vegetative propagation
[68, 69]. Researchers at the Stoneville and Rhinelander loca-
tions have been intimately involved in developing material
and systems for SRWC. Research on eucalypts for pulpwood,
begun in 1959 by the Florida Forests Foundation, was the
origin of the research program begun in 1968 by the USDA
FS and the Florida Division of Forestry at Lehigh Acres [70].
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The SRWC focus at the USDA FS Southern Hardwoods
Laboratory in Stoneville, MS, has been the native eastern
cottonwood (Populus deltoides Bartr. ex Marsh). An early

evaluation of hybrid poplar was conducted in cooperation
with the Oxford Paper Company [71], but generally, hybrids
have not done as well in the Deep South as the native eastern

Table 1 Species considered promising for short-rotation woody crop production systems in the USA (adapted from [16, 17, 18, 19])

Species Common name Region

NW W/SW GP LS MW S/SE NE SB/T

Acer saccharinum L. Silver maple X X

Ailanthus altissima (Mill.) Swingle Tree of heaven X

Falcataria moluccana (Miq.) Barneby & Grimes

(formerly Albizia falcataria)

Peacocksplume X

Alnus glutinosa (L.) Gaertn. European alder X

Alnus rubra Bong. Red alder X

Atriplex canescens (Pursh) Nutt. Four-wing saltbush X

Elaeagnus umbellata Thunb. Autumn olive X

Eucalyptus amplifolia Naudin Cabbage gum X X

Eucalyptus dorrigoensis (Blakely) L.A.S. Johnson

& K.D. Hill (syn. Eucalyptus benthamii)

Camden white gum X

Eucalyptus camaldulensis Dehnh. River red gum X

Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson

(syn. Eucalyptus citriodora)

Lemon-scented gum X

Eucalyptus dalrympleanaMaiden Mountain white gum X

Eucalyptus globulus Labill. Tasmanian blue gum X

Eucalyptus grandis W. Hill ex Maid. Grand eucalyptus X

Eucalyptus macarthurii H. Deane & Maiden Camden woollybutt X

Eucalyptus robusta Sm. Swamp mahogany X

Eucalyptus saligna Sm. Sydney blue gum X

Eucalyptus sideroxylon A. Cunn. ex Woolls Red ironbark X

Eucalyptus viminalis Labill. Manna gum X

Eucalyptus grandis ×Eucalyptus urophyllaa Hybrid eucalypt X X

Liquidambar styraciflua L. Sweetgum X

Pinus banksiana L. Jack pine X

Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg. Sand pine X

Pinus elliottii Engelm. Slash pine X

Pinus nigra×Pinus densiflora Hybrid pine X

Pinus sylvestris L. Scots pine X

Pinus taeda L. Loblolly pine X

Platanus occidentalis L. American sycamore X

Populus deltoides Bartr. ex Marsh. Eastern cottonwood X X

Populus hybrids Hybrid cottonwood X X

Populus hybrids Hybrid aspen X

Populus hybrids Hybrid poplar X X X

Populus tremuloides Michx. Quaking aspen X

Populus balsamifera L. subsp. trichocarpa

(Torr. & A. Gray ex Hook.) Brayshaw

Black cottonwood X

Prosopis alba Griseb. Mesquite X

Robinia pseudoacacia L. Black locust X X X

Salix spp. Willow spp. X

Triadica sebifera (L.) Small (syn. Sapium sebiferum) Chinese tallow X

Tamarix L. Tamarisk X

Ulmus pumila L. Siberian elm X

NW Northwest,W/SWWest/Southwest, GP Great Plains, LS Lake States,MWMidwest, S/SE South/Southeast, NE Northeast, SB/T Subtropics/Tropics
a Genetically engineered for cold tolerance or lignin biosynthesis [20]
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cottonwood, in part due to greater susceptibility to Septoria
stem canker [68]. Early work on poplar breeding in the South
was done at Stoneville during the 1950s [72]. Phenotypically
superior trees were selected, clonally propagated, tested, and
released [73]. The clonal cottonwood selections released by
researchers at Stoneville, taken from native populations grow-
ing along the Mississippi River and rivers elsewhere in the
Southern USA, are the foundation of poplar breeding pro-
grams around the world [68, 74]. Of the 14 superior clones
described byMohn et al. [74], five of these were given a Bblue
tag^ certification (i.e., highest level) in 1974. This was the first
blue tag certification of any forest reproductive material in the
USA [75]. Observations of cottonwood growing in natural
stands provided the information needed to specify the basic
requirements for establishing and growing cottonwood, but
until 1960 only pilot tests were established [76].Working with
cooperators, a flexible system of Populus culture was devel-
oped [77], and in 1960, industrial plantings were initiated by
Crown Zellerbach Corporation with the purchase of a 6070-ha
cattle and cotton plantation near Fitler, MS, that was devel-
oped into a cottonwood plantation. Other companies in the
region followed suit [76].

The Maximum Yield Work Unit was established at the
USDA FS Northern Institute of Forest Genetics in

Rhinelander, WI, in 1971. The work unit took a systems ap-
proach, with researchers from different disciplines, to select
promising species, investigate establishment methods for
SRWC culture, and evaluate pulping qualities and the eco-
nomic viability [78]. More basic research was incorporated
in 1976 and furthered by funding from the US Department
of Energy from 1977 to 2002. Poplars are prone to hybridiz-
ing, and P. deltoides introduced to Europe by botanists
spontaneously crossed with the native black poplar (Populus
nigra L.) and came to be known as Canadian poplars
(Populus× canadensis Moench). These wild Euro-American
hybrids stimulated interest in producing controlled crosses.
The first documented controlled cross of western black poplar
(Populus trichocarpa Torr. & Gray) and P. deltoides in 1924
led to vegetative propagation of selected clones, and by the
1930s, poplar breeding programs were widespread in Europe
and North America [10]. Researchers at Rhinelander have
concentrated on hybrid poplars for SRWC [79], although they
have also investigated other species including jack pine (Pinus
banksiana Lamb.), larch [Larix laricina (Du Roi) K. Koch],
alder (Alnus spp. Mill.), and green ash (Fraxinus
pennsylvanica Marshall) [78].

The history of Eucalyptus in the continental USA dates
back to the California Gold Rush of the mid-1800s [70], but

Fig. 1 Map of research sites for ecosystem services of woody crop
production systems in the USA. The three sites indicated in rectangular
boxes (with square edges) are historic locations for USDA Forest Service

woody crop biomass research and development. The two sites indicated
in the remaining two boxes (with round edges) are current, long-term
biomass and bioenergy research locations
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Table 2 Short-rotation woody crop genomic groups and genotypes tested for the provision of ecosystem services and development of environmental
technologies in the United States

Genus/genomic group Genotype(s) Reference(s)

Populus

P. deltoides 91.05.02, 91.08.09, 110531, 110804, 112127, 112830, 5910100,
7300500, 7300501, 7300502, 7302801, 7302810, 8000104, 8000105,
3-1, 14-71, 14-129, 32-5, 42-7, 51-5, 61–2, 61-4, 61-8, 62-4, 63-1,
66-9, 72C-2, 79-4, 90-3, 92-4, 93-6, 94-4, 100-3, 115-1, 119-6, 147-1,
171-1, 180-1, 189-4, 192-2, 193-5, 220-5, 252-4, 42-7, 51-2, C910401,
C910502, C910506, C910508, C910510, C910613, C910706,
C910809, C910903, C912500, C916000, C916001, C916013,
C916021, C916101, C916201, C916304, C916305, C916306,
C916323, C916325, C916400, C916401, C916413, C916500,
C917900, C918001, C918012, CHILI.2-01, CHILI.2-02, D1, D3, D5,
D7, D9, D10, D11, D101, D102, D103, D104, D105, D106, D107,
D108, D109, D110, D111, D112, D113, D114, D117, D118, D119,
D120, D121, D122, D123, D124, D125, D126, D129, D130, D132,
D133, D134, D135, D137, D139, D141, D144, D147, Kentucky 8,
M2-9, M3-4, M7-3, Ohio Red, S7C1, S7C8, S7C15, S13C20, ST66,
ST70, ST71, ST72, ST75, ST109, ST260, ST261, ST264, WV99,
WV316, WV415, WV416, wild-type collections

[22–43]

P. grandidentata Wild-type collections [42]

P. suaveolens subsp. maximowiczii 897-1, 898-1, 900-2, 904-2, 1050-10, 1051-4, 1051-10, 77331, 77341,
77441

[41]

P. nigra 13-17, 13-308, 22SNOP01, 21SNOP12 [22, 23, 40]

P. trichocarpa 062, 065, 072, 322, 12-106, 91-568, 93-968 [40, 44]

P. deltoides×P. deltoides 119.16, 11428.03, 12111911, 80X00601, 80X00603, 80X00605,
80X01015, 80X01038, 80X01059, 80X01107, 80X01109, 80X01110,
80X01112, 80X01132, 91X01-02, 91X02-01, 91X02-02, 91X04-01,
91X04-02, 91X04-04, 91X04-05, C9425R3, C9425R5, C9425S11,
GB123602, GB250205, ISU.25-4, ISU.25-12, ISU.25-21, ISU.25-35,
ISU.25-R2, ISU.25-R4, ISU.25-R5, WV94

[22, 23, 25, 26, 34, 41–43]

P. deltoides×P. nigra 13-366, 13-818, 13-822, 14-66, 117.53, DN5, DN17, DN21, DN31,
DN34 (aka Eugenei), DN70, DN182, I45-51, NE222, OP367, PL-1,
Simplot Alkaline, Tassman

[22–26, 34, 36, 40, 43,
45–53]

P. deltoides×P. suaveolens subsp.
maximowiczii

25, 113.64, 202.37, 313.23, 313.55, DM101, DM105, DM113, DM115,
Eridano, MWH2, MWH3, MWH5, MWH7, MWH10, MWH11,
MWH12, MWH13, MWH14, MWH15, MWH17, NC14103,
NC14104, NC14105, NC14106, NC14107

[22, 23, 25, 26, 34, 39,
40, 44, 54]

P. nigra×P. suaveolens subsp.
maximowiczii

NM2, NM6 [22–26, 34, 36, 47]

P. alba×P. alba 12XAA9005, 8XAA9004 [22, 23]

P. alba×P. grandidentata Crandon [22–24, 55]

P. alba× (P. alba×P. grandidentata) 11XAAG9102 [22, 23]

P. trichocarpa×P. deltoides 15-29, 23-91, 23-96, 24-305, 49-177, 50-197, 50-194, 52-225, 52-229,
184-40, 184-402, 184-408, 184-411, 195-529, 272-97

[25, 26, 34, 40, 49, 50, 53]

(P. trichocarpa×P. deltoides)
×P. deltoides

NC13377, NC13446, NC13451, NC13460, NC13475, NC13544,
NC13548, NC13552, NC13559, NC13563, NC13568, NC13570,
NC13608, NC13609, NC13624, NC13649, NC13652, NC13661,
NC13668, NC13670, NC13672, NC13680, NC13684, NC13685,
NC13686, NC13724, NC13747, NC13749, NC13800, NC13801,
NC13807, NC13845, NC13850, NC13857, NC13863, NC13992,
NC13999, NC14002, NC14015, NC14018, NC14042

[22–24, 36, 39, 44, 51, 56]

(P. trichocarpa×P. deltoides)
×P. suaveolens subsp. maximowiczii

233-3, 289-69 [40]

(P. trichocarpa×P. deltoides) ×P. nigra 345-1, 346-12, 347-13, 347-13, 347-14 [40]

P. trichocarpa×P. suaveolens subsp.
maximowiczii

262-4, 272-98, 272-239, 281-181, 282-139, 286-74 [40]

P. suaveolens subsp. maximowiczii
×P. trichocarpa

NE41 [43]
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eucalypts fell out of favor by the turn of the century. Interest
spiked again from 1950 to 1970 and USDA FS research in
California and Hawaii continued into the 1990s [80–82]. A
sustained interest developed in the Southern USA, specifically
in Florida [70, 83]. Industry-funded cooperative research pro-
grams provided support for the USDA FS Lehigh Acres
Laboratory [84]. From 1965 to 1984, USDA FS researchers
tested the best of 156 seed sources of 76 eucalypts for southern
Florida, resulting in more than 1500 selected clones of
E. grandis [85]. Swamp mahogany (Eucalyptus robusta
Sm.), river red gum (Eucalyptus camaldulensis Dehnh.), and
forest red gum (Eucalyptus tereticornis Sm.) were also select-
ed and received lesser levels of genetic improvement [70, 84].
Commercial plantations persist today in southern Florida and
Hawaii [21, 85]. In the past, deployment of Eucalyptus in the
South north of lower Florida has been limited by severe
freezes [70]. Nevertheless, a renewed search has begun for

freeze-tolerant species and provenances [86], as well as
development of transgenic E. grandis×E. urophylla [8, 20].

Recently, a group of forest industry experts in the south-
eastern USA were asked what hardwood species were best
suited for biomass production [87]. They agreed that
sweetgum (Liquidambar styraciflua L.) had broad regional
application, although they acknowledged its relatively low
growth rates. Frost-tolerantEucalyptus spp. were recommend-
ed for the coastal zone, and poplar (P. deltoides and hybrids)
was particularly favorable if cultivars tolerant of marginal site
conditions became available.While acknowledging the poten-
tial for several hardwoods, the forest industry experts recom-
mended considering loblolly pine (Pinus taeda L.) for SRWC.
The proven capabilities of southern pines to sustainably pro-
duce biomass and a well-developed supply chain, particularly
for plantation loblolly pine, certainly support the consider-
ation of southern pine for SRWC [21, 88, 89]. Loblolly pine

Table 2 (continued)

Genus/genomic group Genotype(s) Reference(s)

P. trichocarpa×P. nigra 302-1, 302-4, 302-5, 302-6, 303-11, 303-12, 303-13, 303-14, 304-21,
304-22, 304-23, 304-24, 304-25, 304-26, 304-27, 304-28, 305-31,
305-32, 305-33, 305-34, 305-35, 306-41, 306-42, 306-43, 306-44,
306-45, 306-46, 306-47, 306-49, 306-52, 306-448, 307-51, 308-61,
309-71, 309-72, 310-84, 310-85, 310-87, 311-93, 312-101, 313-111,
313-112, 313-113, 313-114, 313-115, 314-121, 314-122, 314-123,
314-124, 315-131, 315-132, 315-134, 315-135, 315-136, 315-137,
316-141, 316-142, 316-143, 317-152, 317-153, 317-154, 318-161,
318-162, 318-164, 345-1

[25, 26, 34, 40]

P. trichocarpa×P. trichocarpa D-01 [53]

P. trichocarpa× (P. trichocarpa
×P. deltoides)

353-273 [40]

P. charkowiensis×P. cv incrassata NE308 [43]

Salix

S. dasyclados SV1 [42]

S. eriocephala 9837-77, S25, S287, wild-type collections [42, 57]

S. eriocephala× S. eriocephala S566 [57]

S. interior Wild-type collections [58–60]

S. miyabeana SX64 [42]

S. nigra Wild-type collections [42, 58–63]

S. purpurea 94003, 94012 [57]

S. sachalinensis SX61 [57]

Pinus

P. taeda 7-56 [27–30, 64, 65]

Platanus

P. occidentalis Control-pollinated families [27–31, 66, 67]

Liquidambar

L. styracifula Control-pollinated families [27–31]

Sections (in bold) and authorities for the aforementioned Populus species are: Aigeiros Duby—P. charkowiensis R. I. Schrod., P. deltoides Bartr. ex
Marsh, P. incrassata Dode, P. nigra L.; Tacamahaca Spach—P. suaveolens Fischer subsp. maximowiczii A. Henry, P. trichocarpa Torr. & Gray;
Populus L.—P. alba L., P. grandidentata Michx

Authorities for the remaining genera and species include: Salix—S. dasyclados Wimm., S. eriocephala Michx., S. interior Rowlee, S. miyabeana
Seemen., S. nigra Marsh., S. purpurea L., S. sachalinensis F. Schmidt; Pinus taeda L.; Platanus occidentalis L.; Liquidambar styracifula L.
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does not readily sprout; hence, coppice rotations are infeasi-
ble. Because there are substantial markets for larger round-
wood, biomass systems for loblolly pine can be flexible, run-
ning the gamut from dedicated single-product stands for
bioenergy [90], dual-cropping for bioenergy and conventional
products [91, 92], or intercropping pine with perennial energy
grasses [93].

Over 50 years of intensive research and experimentation in
the USA and globally has validated the basic premises of
SRWC: use of species with rapid (indeterminate) initial stem
growth and coppicing ability, in dense plantings, with short
clear-felling cycles. In large part due to USDA FS Research
and Development (USDA FS R&D), intensive cultural tech-
niques have been developed, including genetically superior
material, weed control, fertilization, and irrigation strategies
[10, 88]. Optimizing cultural practices that match genetics to
site and regulate density and rotation length to achieve greater
leaf area maximize yield [78]. Advances in genetic and phys-
iological biotechnology have opened the door to a new world
of possibilities for tree growth and wood properties [10, 88].
Realization of these possibilities will be determined by regu-
latory constraints, public attitudes, and, of course, markets.

While historical efforts for the development of SRWC fo-
cused on the production of biomass for bioenergy, biofuels,
and bioproducts, much of the more recent work has expanded
to include broader objectives of achieving multiple ecosystem
services. Specifically, USDA FS research conducted across
the USDA Biomass Research Centers has utilized baseline
information from these former studies to further develop and
refine woody crop production systems for biomass produc-
tion, carbon sequestration, water quality and quantity, and soil
health. In addition, current systems have been expanded be-
yond traditional fiber production to other environmental tech-
nologies that incorporate SRWC as vital components for
phytoremediation, urban afforestation, forest restoration,
and mine reclamation (see [94] in this special issue).

Ecosystem Services

The Millennium Ecosystem Assessment [95] categorizes eco-
system services into four groups. Provisioning services are the
goods and products obtained from ecosystems (e.g., biomass,
freshwater), while regulating services include the benefits ob-
tained from an ecosystem’s control of natural processes (e.g.,
carbon sequestration, soil quality). The four specific ecosys-
tem services listed are highlighted belowwith respect to recent
USDA FS research conducted at the USDA Biomass
Research Centers. For biomass, we describe productivity po-
tential and realized yields, as well as growth impacts from
pests. The section ends with a discussion about the develop-
ment of bioenergy siting applications. For carbon, regional
implications are discussed, followed by a section highlighting

water quality and quantity across genera. The final ecosystem
services section describes research on soils and wildlife hab-
itat. Although it is beyond the scope of this paper, the remain-
ing two groups include cultural services which are the non-
material benefits obtained from ecosystems (e.g., spiritual and
educational values) and supporting services that include the
natural processes that maintain the other ecosystem services
(e.g., nitrogen and water cycles) [95].

Biomass

Productivity Potential

Hybrid Poplar

Typical hybrid poplar productivity potential in the North
Central USA has ranged from 4.0 to 13.0 dry Mg ha−1

year−1, with some values exceeding 20.0 dry Mg ha−1 year−1

when matching genotypes to specific adaptation zones [22,
45]. The most common method for estimating hybrid poplar
productivity has been to develop biomass equations based on
simple traits such as diameter at breast height (DBH) and/or
height [96, 97]. Others have developed more complex equa-
tions using additional allometric characteristics and wood
properties [98]. While these equations have been useful and
accurate when used only for the specific genotype or genomic
groups they were developed for, even the seemingly more
complex equations have not been robust enough to account
for the broad amount of genetic variability among Populus
species and their hybrids. More specifically, an equation de-
veloped for one clone is likely not adequate for other geno-
types, especially those belonging to different species and tax-
onomic sections.

Recent work at the Central-Eastern and Northern-East
Regional USDA Biomass Research Centers has included the
development of biomass equations based on harvests of 198
hybrid poplar trees from two different regional testing net-
works [23, 46] that were established between the years 1987
and 2001 at 15 sites across the North Central USA (Fig. 1).
Analyses are still ongoing, yet two initial trends are apparent.
First, older equations commonly used in the region are not
well suited for estimating biomass of newer genotypes, with
previous equations consistently overestimating biomass pro-
ductivity potential. Second, equations specific to genomic
groups were sufficient for estimating biomass of the newer
genotypes, with clone-specific equations resulting in minimal
improvements in model fit compared to group-specific equa-
tions [99]. Hence, using group-specific equations was shown
to be robust enough for the newer genotypes.

Nevertheless, recognizing limitations in robustness and
complexity associated with biomass productivity equa-
tions, USDA FS scientists partnered with researchers from
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Iowa State University to parameterize, calibrate, and val-
idate the Physiological Principles Predicting Growth (3-
PG) process-based growth model for hybrid poplars in the
North Central USA [45]. While others have validated the
model for loblolly pine and eucalypts [100] and poplars
[101], this was the first validation for hybrid poplar in
the USA. The aforementioned limitations are important
to understand because biomass is largely driven by the
response of genetic and physiological mechanisms con-
trolling growth to site conditions such as climate and
soils. Unlike biomass productivity equations, estimates
from 3-PG are substantially more accurate given that the
model accounts for differences in these genotype- and
location-specific characteristics. More specifically, 3-PG
uses solar radiation and temperature data along with
species-specific photosynthetic parameters to establish
maximum potential productivity, from which actual pro-
ductivity is estimated based on limiting factors such as
site fertility and water availability (as influenced by pre-
cipitation, soil water holding capacity, water table access,
etc.) and allocated among tree components (stems, fo-
liage, and roots) based on allometric relationships. Thus,
productivity is estimated based on the site-specific avail-
ability of key resources and the species-specific physio-
logical processes which govern the conversion of these
resources into biomass. Based on this model develop-
ment, estimates of hybrid poplar productivity were devel-
oped for Minnesota and Wisconsin [45]. The mean annual
productivity ranged from 4.4 to 13.0 dry Mg ha−1 year−1,
and the highest productivity potential was located in
South Central Minnesota and southern Wisconsin.
Productivity values decreased at higher latitudes.

These productivity modeling efforts were then further ex-
panded with the development of an approach for deploying
hybrid poplar production systems to increase yield and asso-
ciated ecosystem services across the landscape [9].
Specifically, building on SRWC research dating back to the
Maximum Yield Work Unit described above, knowledge of
poplar silviculture was merged with large-scale spatial analy-
ses to predefine zones of potential hybrid poplar adaptation
that were ecologically sustainable [24] and economically fea-
sible [102] across the landscape. Across both states, eligible
lands were identified, field reconnaissance was conducted
across 143 test sites, and the 3-PG model of Headlee et al.
[45] was refined to estimate poplar productivity within the
suitable areas. Two changes were made to the original model.
First, SSURGO soil data replaced STATSGO soil data,
resulting in increased mapping resolutions. Second, to capture
the potential implications of genotypic selection, two clonal
groups were tested. Estimates for generalist clones, defined as
those performingwell across the region, were developed using
the default settings fromHeadlee et al. [45] and SSURGO soil
data. In contrast, productivity for specialist clones, defined as

those adapted to specific locations, was modeled as with gen-
eralist clones plus the adjustment of setting the optimum tem-
perature for growth equal to each site’s mean maximum grow-
ing season temperature (June to August) [9]. Overall, hybrid
poplar productivity ranged from 9.5 to 11.9 dry Mg
ha−1 year−1, with a mean of 10.0 dry Mg ha−1 year−1.
Specialist clones exhibited an 18 % increase in productivity
potential compared with their generalist counterparts, thereby
expressing the importance of considering genotype ×
environment interactions when deploying hybrid poplars in
the region, regardless of end use.

Cottonwood

Eastern cottonwood (P. deltoides) is a prime candidate for
SRWC because it is the fastest growing tree in North
America and is easy to propagate vegetatively [69, 103].
Eastern cottonwood is one of the tallest hardwood species,
achieving heights of 53–59 m in natural stands with diameters
of 120–180 cm [104, 105]. Cottonwood is intolerant of shad-
ing, with much variability among clones. Generally, crowns of
cottonwood do not touch even in closely spaced plantings and
belowground competition may commence before crown clo-
sure [106]. Individual tree volume equations were developed
by Krinard [107] and form the basis for the compatible growth
and yield model developed by Cao and Durand [108]. Site
index, developed from stand data, is used in the model; poly-
morphic site index curves for cottonwood plantations in the
Lower Mississippi Alluvial Valley for base age 10 years were
developed by Cao and Durand [109]. In plantations, the mean
annual height growth at age 10 was reported as 1.9–
2.4 m year−1 [108].

Cottonwood grows best on well- and moderately well-
drained soils and most clones do not tolerate saturation and
anaerobic soil conditions during the growing season [69].
Expanding cottonwood to less favorable sites will require
identification of adapted clones. The need to control compet-
ing vegetation early in the rotation presents a limitation on
some heavy-textured soils due to equipment limitations that
make weed control difficult as well as increased costs.
Improved genetic material and other advances in SRWC cul-
ture could produce higher productivity than has been achieved
in industrial pulpwood plantations, which have sustained
yields of more than 10.0 dry Mg ha−1 year−1 [69]. Proven
clones on good sites, tended with appropriate and timely cul-
tural treatments, in 5 years can produce more than
13.0 dry Mg ha−1 year−1 [110]. Potential SRWC yields, with
higher initial density and shorter rotations, have been estimat-
ed as 27.0 dry Mg ha−1 year−1 [111, 112]. Advanced breeding
to match clones to site, and for disease resistance and
appropriate silvicultural practices, will be needed to achieve
a doubling of productivity.
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Loblolly Pine

The establishment of the Southern Forest Experiment Station
in New Orleans, LA, and the Appalachian Forest Experiment
Station in Asheville, NC, by the USDA FS was a milestone in
the development of forestry and forest research in the South
[113]. The actual and potential productivity of southern pine
species became apparent with the publication of
Miscellaneous Publication 50 [114], and the technology for
establishing pine plantations on cutover land was advanced by
the work of USDA FS scientist Dr. PhilipWakeley [115]. Half
a century of research and breeding by USDA FS, forest indus-
try, and university scientists and implementation by forest
industry and other large private landowners have produced
plantations of loblolly pines that grow ten times faster than
naturally regenerated stands [116–118]. Of the southern pines,
loblolly pine exhibits the fastest early growth and is the most
responsive to amendments [21]. Genetic improvement of
planting stock, along with advances in silvicultural techniques
and a well-developed value chain, provides a broad founda-
tion for SRWC pine. Over the years, USDA FS scientists have
contributed directly and through cooperative research pro-
grams to the development of plantation pine culture, including
growth and yield [119–124].

There is relatively little published information on the use of
loblolly pine for SRWC, but before forest industry divested
much of their land in the 1990s, they experimented with SRIC
for pulpwood. By controlling height growth losses to
Nantucket pine tip moth (Rhyacionia frustrana Scudder in
Comstock), they obtained annual growth increments of
3.1–3.6 dry Mg ha−1 at ages 10–12 years on some sites
[117, 125] and on most sites routinely obtained annual incre-
ments averaging 2.1–2.7 dry Mg ha−1 [126, 127]. Studies
comparing planting density and genotypes provide insight in-
to potential growth under SRWC. For example, there was no
difference in growth under two dense plantings (3700 and
4400 trees ha−1) after 4 years and stem biomass growth in
the fourth year was 17.4 dry Mg ha−1 [128]. Using the same
improved family, Adegbidi et al. [129] reported biomass ac-
cumulation from four intensively managed stands planted at
the same density, 1495 trees ha−1. After 4 years, stemwood
growth was 10.1 dry Mg ha−1 year−1 and accounted for 34 %
of the net primary production.

Eucalypts

Short-rotation Eucalyptus potentially could produce more
biomass than loblolly pine if frost-tolerant site-adapted ge-
notypes can be identified. Short rotation systems in
Peninsular Florida using E. grandis and cabbage gum
(Eucalyptus amplifolia Naudin) can produce up to
67.0 green Mg ha−1 year−1 in multiple 3-year rotations
[83]. Appropriate sites are likely on soils of sandy clay

loam and clay loam textures and moderately well- to
well-drained soils, avoiding sites with imperfect or exces-
sive drainage [70]. Managing competing vegetation and
developing appropriate fertilization regimes are needed to
achieve high levels of productivity [70]. Weed control
treatments are not well developed for eucalypts in the
South; herbicides used for pine culture are not appropriate
for eucalypt plantations. Because Eucalyptus spp. are not
native to North America, there is concern for their potential
invasiveness and effects on natural ecosystems [130].
Potential invasiveness was investigated based on field as-
sessment of actual escapes from Eucalyptus plantings on
three sites in South Carolina and 16 sites in Florida [131].
They found a small number of E. amplifolia, E. robusta,
and E. grandis seedlings growing within and nearby to
Eucalyptus plantations at four sites in Florida, but only
two individuals were detected more than 45 m from plan-
tation boundaries.

Callaham et al. [131] concluded that the invasiveness po-
tential for Eucalyptus species considered for the Southern
USA is generally low. The species with the greatest potential
for the Southern USA have limited ability to disperse and
produce small seeds with low viability. Seedlings are light-
demanding and grow poorly under closed forest or understo-
ry canopies. Some eucalypt species may naturalize (sponta-
neously reproduce in their introduced range) in the South,
but there was no evidence for invasion (reproducing and
spreading long distances, i.e., hundreds of meters in large
numbers). Nevertheless, Callaham et al. [131] cautioned that
the potential for spread into unmanaged areas should not be
dismissed.

Another potential concern for expanding eucalypt planta-
tions in the South is increased fire risk. Goodrick and
Stanturf [132] examined the effect of widespread plantings
of eucalypts on the risk of wildfires and whether fire behav-
ior in eucalypt stands would differ from fires in commonly
occurring vegetation types such as pine plantations. They
used the Fuel Characteristic Classification System and liter-
ature values for fuel characteristics and loads to model sur-
face fire behavior in young Eucalyptus plantations and
found little difference as compared to surface fires in fuels
common to pine forests characteristic of the Lower Coastal
Plain. Spotting behavior (i.e., when a fire produces sparks or
embers that are carried by the wind and start new fires
beyond the zone of direct ignition by the main fire) is a
characteristic of eucalypts that existing models do not ade-
quately account for, but stands managed on short rotation
(less than 10 years) will likely be harvested before bark
shedding presents a significant spotting problem. Fires are
more likely to start outside Eucalyptus plantations than in-
side, but once a crown fire is initiated, it will spread rapidly
and the potential is for more severe crown fire behavior than
in pine stands.
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Cottonwood, Loblolly Pine, and Eucalypts

The genus-specific research described above is very important
for the advancement of SRWC production systems. However,
there is a need for additional studies comparing these genera
(and their species) side-by-side across multiple temporal and
spatial scales. Currently, 3-PG is being used to account for
environmental influences on tree growth while comparing
the productivity potential of cottonwood, loblolly pine, and
eucalypts across a range of environmental conditions in a
quantitative, spatially explicit manner [133]. The specific ob-
jectives of this research include: (1) adapting the 3-PG model
for cottonwood, loblolly pine, and eucalypts within the south-
eastern USA; (2) using existing geographic information sys-
tem (GIS) layers for soils and climate to generate productivity
estimates within the region by climate zone and soil type; and
(3) determining the optimum (i.e., highest economic value)
species and rotation age by climate zone and soil type.
Preliminary outcomes of model fitting and mapping efforts,
assuming low-intensity management and planting densities
typical of each species, indicate that peak productivity of
9.5–15.7 dry Mg ha−1 year−1 can be expected for eucalypts
on 3- to 4-year rotations, 12.2–17.2 dry Mg ha−1 year−1 for
loblolly pine on 13- to 15-year rotations, and 9.6–18.6
dry Mg ha−1 year−1 for poplars on 12- to 13-year rotations
[134]. In the northern part of the region, productivity estimates
for loamy and clay soils were highest under poplar production,
whereas theywere highest on sandy soils with loblolly pine; in
the southern part of the region, productivity estimates were
generally highest for eucalypts across soil types.

Yield

Hybrid Poplar

In the southeastern USA, the survival and growth of 31 pure
species and hybrid Populus selections were evaluated on an
upland sandy and bottomland sandy loam site [25]. All trees
received irrigation at the upland site, while trees received irri-
gation or no irrigation (control) at the bottomland site. One
pure P. deltoides selection and two P. trichocarpa × P.
deltoides hybrids accumulated the most stem volume (ranging
from 25.6 to 31.6 dm3) after 3 years at the upland site. The
hybrid clones originated in the Pacific Northwest, while the
pureP. deltoideswas fromMississippi. At the bottomland site,
pure P. deltoides selections (one from Arkansas and one from
Mississippi) accumulated the most stem volume (ranging
from 17.5 to 20.8 dm3) after three growing seasons, and irri-
gation resulted in substantial growth increases. These studies
highlight the importance of irrigation in the absence of a nat-
ural water source for Populus growth in the southeastern
USA. These trees were also evaluated after ten growing sea-
sons [26]. Early survival (i.e., up to 3 years old) correlated

well with survival after 10 years, and stem volume of 3-
year-old trees correlated well with stem volume after 10 years
on an upland site. This work supports the screening of multi-
ple Populus selections if they are to be a viable biomass alter-
native in the southeastern USA. These data are needed to find
selections that will both survive and produce in the warm
climate and on (often) sandy, non-alluvial soils.

In the North Central USA, the gap between hybrid poplar
yields in small-plot versus field-scale trials has decreased in
the past decades, making hybrid poplars more economically
feasible in some areas [102]. However, despite promising
gains from selection coupled with increased silvicultural
knowledge, genotype× environment interactions continue to
dominate yields [22]. Hansen [135] published one of the first
papers on hybrid poplar yield potential, where estimates
ranged from 7.6 to 15.7 dry Mg ha−1 year−1 in Wisconsin.
Along with others, he later reported that superior clones in
small-plot trials exhibited 300 %, and those in field trials
200 %, greater yield than commercial clones at mid-rotation
[79]. At rotation age (i.e., 10–12 years), Netzer et al. [46]
reported similar results from many of these same sites.

There are two notable examples of recent USDA FS hybrid
poplar yield research in the North Central USA. First, the US
Department of Energy at the Oak Ridge National Laboratory
funded a regional field testing network that spanned four
states (Iowa,Michigan, Minnesota,Wisconsin), three planting
years (1995, 1997, 2000), and roughly 200 genotypes belong-
ing to 10 genomic groups [23]. Zalesny et al. [22] conducted a
remeasurement campaign and reported that new, superior
clonal selections exhibited 1.4–2.7 times as much biomass
as commercial clones and that some of these selections had
mean annual increments greater than 20.0 dry Mg ha−1 year−1

(i.e., 50 % greater biomass than estimates for previous supe-
rior selections). Second, with funding from the USDA FS
R&D Washington Office Woody Biomass, Bioenergy, and
Bioproducts Program, Northern Research Station scientists
have partnered with university collaborators to develop an
integrated network from the original Hansen et al. [79] and
Riemenschneider et al. [23] trials to test long-term ecosystem
services of hybrid poplars, with biomass yield being one of
these services. The resultant ecosystem services network that
is also currently being used for carbon (see below), water use
(see below), and conversion [47, 48, 136] studies (Fig. 2) is
comprised of 11 of the original Hansen et al. [79] sites (i.e.,
20-year-olds) and four of the original Riemenshneider et al.
[23] plantings (i.e., 10-year-olds) located in Iowa, Michigan,
Minnesota, andWisconsin (Fig. 1). In total, 12 clones belong-
ing to five genomic groups are being tested, with 10 clones
from the 10-year-old network and two clones from the 20-
year-old plantations (Table 2). Site × clone interactions
governed yield for both age groups (10 years, P=0.0421;
20 years,P<0.0001). For the 10-year-old trees, the interaction
means of biomass ranged from 3.3 to 16.9 dryMg ha−1 year−1,
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with an overall mean of 8.7 dry Mg ha−1 year−1. The least
biomass was from a P. deltoides×P. deltoides F1 hybrid
(‘C918001’) growing in Escanaba, MI (45.77°N, 87.20°W),
while the most biomass was from another hybrid from that
genomic group (‘C916400’) growing at Arlington, WI
(43.29°N, 89.37°W). For the 20-year-old trees, the interaction
means of biomass ranged from 5.8 to 21.7 dryMg ha−1 year−1,
with an overall mean of 11.9 dryMg ha−1 year−1. Of particular
note is the biomass yield of clone ‘DN182’, a P. deltoides
× P. nigra F1 hybrid, that exhibited greater than 18.0
dry Mg ha−1 year−1 at three sites [Rhinelander, WI
(45.63°N, 89.46°W); Granite Falls, MN (44.80°N,
95.52°W); and Fairmont, MN (43.69°N, 94.35°W)]. This
yield is more than three times higher than those reported in
Hansen et al. [79], indicating that silvicultural research was
successful at increasing yields in the region.

Cottonwood

A long-term replicated experiment was established in 2000 at
the USDA FS Southern Research Station Savannah River Site
in New Ellenton, SC (33.38°N, 81.67°W) [27] (Fig. 1). Two
pure P. deltoides clones (‘ST66’ of Mississippi origin and
‘S7C15’ of East Texas origin) were included in this study that
measured growth and productivity responses to varying levels
of irrigation and fertilization. In a non-replicated experiment
designed to find optimal nitrogen fertilization rates [28], the
optimal nitrogen fert il ization rates were 131 and
71 kg N ha−1 year−1 for irrigated and non-irrigated ‘ST66’,
respectively. Maximum aboveground biomass differed little,
however, between irrigated and non-irrigated trees (i.e., range
from 3.6 to 4.3 dry Mg ha−1 year−1). Clone ‘S7C15’was more
N-demanding, as the optimal rate for irrigated trees was

232 kg N ha−1 year−1 and for non-irrigated trees was
94 kg N ha−1 year−1. Furthermore, growth responses for
‘S7C15’ differed greatly between irrigated (6.3 dry Mg ha−1

year−1) and non-irrigated (2.9 dry Mg ha−1 year−1) trees.
Overall, the use of irrigation would not be economically
feasible for these two P. deltoides clones in this area, or likely
on this type of soil throughout the southeastern USA.

Furthermore, the growth of both clones was significantly
improved by increasing resource availability throughout the
harvest rotation [29, 30]. After nine growing seasons, above-
ground woody production was 7.2 and 6.4 dryMg ha−1 year−1

in ‘ST66’ and ‘S7C15’, respectively [30]. Irrigation and fer-
tilization resulted in aboveground productivity increases of
>177 %. The relative proportion of above- and belowground
tissue allocation was affected by both tree size and resource
availability [30].

Research directed at eastern cottonwood yields in the
Mississippi Alluvial Valley (MAV) has not kept pace with
SRWC in other regions primarily due to a lack of industrial
plantation management in the region. Two companies that
most recently managed industrial plantations in the region,
Tembec (formerly Crown Vantage) in Fitler, MS, and
Westvaco in Wickliffe, KY, terminated cottonwood manage-
ment and sold their holdings in 1998 and 2007, respectively.
The vast majority of eastern cottonwood plantations
established in the region today are intended for forest restora-
tion, carbon sequestration, wildlife habitat, and recreational
purposes [137]. In the late 1980s, Krinard [107] released vol-
ume equations for plantation-grown eastern cottonwood, and
these equations are still used today for predicting cubic vol-
ume of individual trees. In 1991, Cao and Durand [108] pub-
lished the first growth and yield model to predict whole-stand
volume for eastern cottonwood plantations in the MAV. This
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model was developed from cottonwood plantations through-
out the southern half of the MAV [108], and it appears to
conform well to operational yields produced locally [138].

The Cao and Durand [108] model is a compatible growth
and yield model that predicts cubic-foot volume yield and
projects volume from site index, initial age, and basal area.
The model was the basis for an Excel spreadsheet called
Cotton, prepared by Cao for Crown Vantage (later Tembec)
in 1994. Stanturf and Portwood [138] used this software to
estimate volume to a 7.5-cm top and yield of green
megagrams per hectare for stands on three representative
soil/site productivity classes to evaluate the economic poten-
tial of pulpwood rotations of 10 and 11 years. These soils are
suitable for growing cottonwood, but vary in productivity.
Stocking and height measurements at age 3 were taken from
stands on the Fitler Plantation, on old-field sites, protected by
the river levee, with good survival. Stands were planted with
improved stock, fertilized at site preparation, and competing
vegetation was controlled with herbicides [138].

The modeled yields are shown in Table 3. The stand on
the Commerce soil (Aeric Fluvaquents) represented the
highest productivity sites and yielded 76.7 dry Mg ha−1 at
age 10. The medium productivity sites on Tunica-Bowdre
soils (Vertic Haplaquepts-Fluvaquentic Hapludolls) and the
lowest productivity sites on the Sharkey soil (Vertic
Haplaquepts) yielded considerably less, 56.0 and
47.0 dry Mg ha−1, respectively. One deficiency of the mod-
el is that it is not valid for coppice rotations, and operational
experience from the Fitler plantation indicates that mer-
chantable yields from stands of coppice origin are typically
reduced by half because most trees develop with multiple
stems [138]. Byrd et al. [139] recently attempted to develop
a simple model for predicting aboveground biomass of
multi-stemmed eastern cottonwood, but the authors were
not satisfied that their model was useful across a range of
soil types and regeneration methods. While coppicing re-
sults in a loss of merchantability for pulp markets, this may
or may not be an issue for biomass markets, but a robust
growth and yield model for stands of coppice-origin eastern
cottonwood remains unavailable for the MAV.

Loblolly Pine

The growth and productivity of loblolly pine selection ‘7–56’
was evaluated over an 11-year harvest rotation (i.e., from 2000
to 2010) on a sandy upland site in South Carolina (33.38°N,
81.67°W). Trees received irrigation (0.5 cm day−1, for a total
of 3.0 cm week−1), fertilization (120 kg N ha−1 year−1), and
irrigation+ fertilization or were untreated (control). Loblolly
pine did not respond to irrigation during early [31] or late [30]
development, indicating that fertilization was the primary lim-
iting factor of tree productivity. Maximum aboveground
woody production of loblolly pine exceeded 19.0 dry Mg
ha−1 year−1, and annual stem productivity was nearly
10.0 dry Mg ha−1 year−1. With fertilization, trees reached a
basal area at which thinning is required at 8 years of age—
3 years sooner than without fertilization (control). Trees
allocated more biomass to belowground tissues as resource
availability increased, even as trees increased in size [30].

Pest Susceptibility: Resistance Screening and Impacts
on Growth

Short-rotation woody crop systems are known to be suscepti-
ble to a number of insect pests [32], and work at the Savannah
River Site (Fig. 1) supported examining of the influence of
resource availability on tree susceptibility to pests. Pest infes-
tations occurred on several tree genera over the course of the
growing rotation. The cottonwood leafcurl mite, Aculops
lobuliferus Keifer, causes premature leaf curling and abscis-
sion, and terminal mortality, early in the rotation [33]. The
mite showed preference for ‘S7C15’ during spring and
‘ST66’ during summer and fall. Miticide applications success-
fully controlled the pest infestation, but not before several
instances of high defoliation. In general, mite damage was
greatest on fertilized trees. Shortly after the mite infestation,
several species of ambrosia beetles attacked live P. deltoides
trees—a relatively rare occurrence for this insect group [32].
Clone ‘ST66’ was more susceptible than ‘S7C15’, and the
highest attack rates were found on fertilized trees. A leafhop-
per, Erythroneura lawsoni Robinson, had very high

Table 3 Estimated cottonwood
plantation yields in the Lower
Mississippi Alluvial Valley at
rotation age 10 years on three
representative soil/site
productivity classes (stands were
age 3 years when measured)
(adapted from [138])

Site

Commerce Tunica-Bowdre Sharkey

Site index (m; base age 10) 24.1 22.3 20.1

Basal area (m2 ha−1) 6.7 3.9 3.4

Stems (ha−1) 682 622 642

Survival percent 91 83 86

Yield at age 10 years (dry Mg ha−1) 76.7 56.3 47.1

Cumulative annual increment (dry Mg ha−1, age 10) 8.4 7.0 6.0

Mean annual increment (dry Mg ha−1, age 10) 7.7 5.6 4.7
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populations in sycamore, and while little foliar feeding injury
occurred, higher numbers of leafhoppers were generally cap-
tured in non-fertilized plots [66]. In loblolly pine, irrigation
and fertilization did not consistently impact Nantucket pine tip
moth damage levels or pupal weight [64].

Cottonwood leaf beetle (Chrysomela scripta F.), cotton-
wood leafcurl mite, and poplar leaf rust (Melampsora medusa
Thüm) incidence and damage were monitored on 31 Populus
clones over 3 years in South Carolina [34]. Irrigated trees had
significantly greater cottonwood leaf beetle and poplar leaf
rust damage levels in each year, and damage tended to in-
crease throughout the growing season. Clone rankings varied
widely among clones and years, depending on the specific
pest and environment. For instance, P. deltoides×P. nigra
clones ‘OP367’ and ‘I45-51’ and the P. trichocarpa×P.
nigra clone ‘311-93’ were most resistant to the cottonwood
leaf beetle on the upland site, but pure P. deltoides clones
‘S7C1’ and ‘7302801’ and the P. nigra× Japanese poplar
(Populus suaveolens Fischer subsp. maximowiczii A. Henry)
clone ‘NM6’ were most resistant on a bottomland site.
Furthermore, clones ‘OP367’, ‘7302810’, and the P. deltoides
clone ‘ST109’ were most resistant to the cottonwood leafcurl
mite on an upland site, while ‘NM6’, ‘I45-51’, and the
P. deltoides × P. suaveolens subsp. maximowiczii clone
‘Eridano’ were most resistant on a bottomland site. Clones
‘NM6’, ‘I45-51’, and the P. trichocarpa×P. deltoides clone
‘15–29’ were highly resistant to leaf rust on both sites.

Bioenergy Siting Applications

In addition to the biological productivity of these SRWC,
USDA FS researchers and their collaborators have made sub-
stantial progress on understanding the economic drivers of
woody biomass. In particular, since 2007, the Southern
Research Station and the University of Tennessee have
partnered to develop a biomass and bioenergy assessment col-
laborative. Since that time, the collaborative has added other
universities and federal agency partners to conduct research
for the development, enhancement, and deployment of
innovative decision support tools.

The Biomass Site Assessment Tools (BioSAT) partner-
ship delivers landscape-scale decision support and web-
based assessments for agricultural, grassland, and forest
ecosystems (Fig. 3). The Bgenesis^ of BioSAT grew from
the knowledge that stability of the biomass markets de-
pends on improved methods to display the risk and cost
of supply and logistics from farms and forests to collection
or conversion facilities. The context was to develop an
integrated resource assessment model to spatially define
and compare socioeconomic and biophysical drivers paired
with community-based human–environmental conditions
impacting the bio-economy.

Conceptual Framework

The collaborative is responsive to research needs expressed in
the literature and reports on the economic availability of bio-
mass including: (1) US Department of Energy US Billion-Ton
Study [140], (2) US Billion-Ton Update [6], (3) USDA FS
Woody Biomass Utilization Strategy [141], and (4) USDA
FS Strategic Energy Framework [142].

As noted, one of the first challenges for any commercial
activity is to determine where suitable and available lands are
located [143]. Site selection must consider biological, eco-
nomic, and societal factors with information on soils, geology,
vegetation, current land uses, topography, etc., compared and
spatially defined using GIS. Potential constraints on the avail-
ability of biomass feedstock also need to be better understood
[144]. Primary constraints include a lack of production capac-
ity along with the high relative costs of production, logistics,
and transportation.

Constraints within the natural, built, and social environ-
ments limit available biomass supplies. These constraints af-
fect the amount and type of biomass potentially available lo-
cally, as well as at broader landscape scales. To address these
constraints, USDA FS researchers are working with partners
to develop decision-making tools that support intelligent
alignment of the production and use of biomass with other
existing ecological, social, and economic objectives [145].
Developing the new bio-economy involves understanding
and establishing many complex relationships [146–148].

Methods

Assessing the bio-economy is not straightforward. The bio-
based sector of the US economy is multidimensional. There is
the lack of clear definition of what attributes, indices, or com-
binations best measure the bio-economy. Multiple-attribute
landscape characterization helps decision-makers discover po-
tential risks and opportunities for local lands. Composite indi-
ces visually summarizing information from an array of indi-
vidual attributes provide a clear picture for the public, indus-
try, media, and policy makers. The data and analyses are not
meant to represent the total state of a geographic region, but
rather to demonstrate what types of information give reason-
able measures of the landscape conditions and opportunities
for developing a bio-based economy. Researchers use the re-
sults of ongoing studies to explore additional attributes with
the intent of adding value and improving the reliability of the
spatially defined framework.

More than 125 attributes have or are being explored for use
as indices within BioSAT (Table 4). These attributes belong to
seven categories: (1) initial siting and economic indices and
models (26 attributes); (2) opportunity zone indices and model
(×12); (3) SRWC production indices and model (×51); (4)
race and origin of population in the USA (×13); (5) natural
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disaster vulnerability indices (×16); (6) carbon (×8); and (7)
plant-available soil water holding capacities to 1.5-m depth
(×1).

Approaches and Results

Phases I and II BioSAT integrates contemporary web-based
information technology (e.g., Virtual Earth and Microsoft
SQL) with existing data: forestry [USDA FS Forest
Inventory and Analysis (FIA)]; agriculture [USDA National
Agriculture Statistics Service (USDA NASS)]; harvesting
[USDA FS Fuel Reduction Simulator (FRCS), Auburn
Harvest Analyzer (AHA)]; and transportation (enhanced
model by [149]).

The BioSAT applications data, models, and results provide
spatially explicit indices for bio-basins. The sub-county mul-
tidimensional framework is used to conduct analyses to

evaluate various aspects of growth, profitability, and uncer-
tainty. All records are organized at a five-digit ZIP Code
Tabulation Area (ZCTA) resolution and matched with zip
codes. The average area for the five-digit ZCTAs in the 33-
state study region is about 169 km2. The five-digit ZCTAs
result in more than 25,000 potential analytical polygons or site
locations. The model uses relatively simple and readily avail-
able GIS-based landscape characterization and socioeconomic
inputs to derive and generate visual evidence of biomass sup-
ply/demand, risk potential, biomass accessibility and land-
scape suitability, opportunity zones, energy crop production
potential, and ecological vulnerability. The BioSAT decision
support tools are available at http://www.biosat.net/.

Research reports and journal publications outline the
process, results of analysis, and the relevance of selected
indices to measure the potential of the bio-economy. With
a focus on supply chain components, the system maps and
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Fig. 3 Conceptual diagram of BioSAT, a model that fuses layers of spatial and economic data together to create a relational database for geographic-
based economic cost assessment for woody and agricultural residue biomass collection or processing demand centers
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displays baseline data for public and business leaders,
assesses the economic availability of woody and
agricultural-derived biomass, identifies local market

conditions, and thereby reduces screening time to locate
sites favorable for full economic or business case due
diligence [150–153].

Table 4 BioSAT model inputs and outputs (adapted from the BioSAT public domain website, www.BioSAT.net)

Input variable Collection level Unit Data source (current date) Output

Forest pulpwood County Dry tons USDA FS FIA (2005–2010) BioSAT model estimates for biomass
quantities (dry tons)

Forest sawtimber County Dry tons USDA FS FIA (2005–2010) BioSAT model estimates for biomass
quantities (dry tons)

Logging residues County Dry tons USDA FS FIA/SRTS model
(2006–2010)

BioSAT model estimates for biomass
quantities (dry tons)

Mill residues County Dry tons USDA FS TPO (2009) BioSAT model estimates for biomass
quantities (dry tons)

Ag residues County Dry tons USDA NASS (2009) BioSAT model estimates for biomass
quantities (dry tons)

Crop-cultivated land area ratio 5-digit ZCTAa Percent U.S. National Land Cover
Database (2006)

Allocation of inventory at 30× 30-m
resolution (spatial)

Forest land area ratio 5-digit ZCTA Percent U.S. National Land Cover
Database (2006)

Allocation of inventory at 30× 30-m
resolution (spatial)

Pulpwood stumpage Intrastate and state US$ dry ton−1 Timber Mart South (2012) BioSAT model resource costs
for biomass (US$ dry ton−1)Timber Mart North (2012)

Reporting by state agencies
(2009–2012)

Sawtimber stumpage Intrastate and state US$ dry ton−1 Timber Mart South (2012) BioSAT model resource costs
for biomass (US$ dry ton−1)Timber Mart North (2012)

Reporting by state agencies
(2009–2012)

Mill residue prices Intrastate and state US$ dry ton−1 Timber Mart South (2012) BioSAT model resource costs
for biomass (US$ dry ton−1)Timber Mart North (2012)

Reporting by state agencies
(2009–2012)

Harvesting costs for roundwood
(5 options)

EcoRegion US$ dry ton−1 Auburn Harvesting Analyzer
enhanced for BioSAT

BioSAT model harvesting costs for
biomass (US$ dry ton−1)

Harvesting costs for logging
residues (2 options)

EcoRegion US$ dry ton−1 USDA FS FRCS Model BioSAT model harvesting costs for
biomass (US$ dry ton−1)

Harvesting costs for ag residues
(2 options)

County US$ dry ton−1 Literature BioSAT model harvesting costs for
biomass (US$ dry ton−1)

Travel distance 5-digit ZCTA Miles Microsoft MapPoint (2009) BioSAT model trucking model
(US$ dry ton-mile−1)

Travel time 5-digit ZCTA Minutes Microsoft MapPoint (2009) BioSAT model trucking model
(US$ dry ton-mile−1)

Diesel prices State US$ gallon−1 U.S. Energy Information
Agency (2012)

BioSAT model trucking model
(US$ dry ton-mile−1)

Labor rates State US$ hour−1 Reporting by state agencies
(2010)

BioSAT model trucking model
(US$ dry ton-mile−1)

License and tax rates State US$ year−1 Reporting by state agencies
(2010)

BioSAT model trucking model
(US$ dry ton-mile−1)

Truck weight limits State Dry tons Reporting by state agencies
(2010)

BioSAT model trucking model
(US$ dry ton-mile−1)

Intra truck-rail locations 5-digit ZCTA Latitude longitude Reporting by rail companies
(2010)

BioSAT model rail-truck locations
(spatial)

Overall outputs include total, average, and marginal costs for biomass in a spatial context for opportunity zones and bio-basins, as well as marginal cost
curves or producer supply curves in a spatial context for opportunity zones and bio-basins
a 5-digit ZCTA five-digit zip code tabulation area. All GIS analysis levels were at the five-digit ZCTA
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The following phases built upon the initial research to
improve and extend the utility of the web-based system.

Phase III: The Wood to Energy Project The objectives in-
cluded providing a complete literature review on the state of
the science and developing a database of wood-to-energy-
related industries in the USA and Canada. The database in-
cludes major forest product industries that produce residues,
users of residues for energy (e.g., boilers, ethanol producers,
etc.), and related industries. Such information is vital to mak-
ing sound planning and business decisions to expand uses of
wood for energy. The system is being continuously updated to
ensure that it is comprehensive as it is practical [154].

Phase IV: Logistic Regression Models of Factors
Influencing the Location of Bioenergy and Biofuel Plants
In addition to the broad range of forest types across the coun-
try, there are regional and local differences in silvicultural
systems, demand for traditional wood products, land use,
landowner attitudes, energy opportunities, and local and state
policies [155]. Phase IV builds upon previous research and is
the first study to use logistic regression models to quantify
significant factors influencing site location of woody
biomass-using bioenergy and biofuel plants and predict poten-
tial locations based on probability. The logistic regression
model is the most widely used method to relate a binary out-
come (i.e., success/failure) to a set of explanatory variables in
a regression setting. Logistic regression models were devel-
oped to identify significant factors that influence the location
of existing wood-using bioenergy/biofuel plants and tradition-
al wood-using facilities. Existing data on favorable and unfa-
vorable locations for woody biomass-using facilities were
used to train logistic regression models. These models were
then used to evaluate the suitability of new locations.
Economic factors, transportation-related factors, and the avail-
ability of biomass feedstocks were included as predictor var-
iables in the logistic regression models. A de-clustering algo-
rithm was developed to move sites identified by the logistic
models away from sources of competition. Based on the lo-
gistic models, 25 locations were predicted for bioenergy or
biofuel plants for a 13-state study region in the Southern
USA [153].

Phase V: A Spatial Index for Identifying Opportunity
Zones for Woody Cellulosic Conversion Facilities The use
of renewable biomass can help diversity markets for agricul-
ture and forestry, create jobs, and promote rural development
[156, 157]. There are many factors that influence the amount
of biomass that is actually available. Phase V integrates geo-
graphical landscape characterization and socioeconomic GIS
data with BioSAT to display and visualize the risk while iden-
tifying opportunity zones for potential biomass-using facilities
(e.g., biorefineries, wood pellet mills, biopower) [152, 153,

158]. Emerging opportunities that compete against existing
uses of property or raw resources are often socially
constrained or permanently denied regardless of economic
viability. The opportunity zones are derived from the use of
landscape suitability and competition indices. Landscape fea-
tures (measure to which a competing land use is physically
restricted by current land use) may adversely impact econom-
ically viable competing uses of property and thereby restrict
biomass access and positive location decisions. Spatial com-
petition is particularly important for access to biomass re-
sources. Existence of competing biomass-using facilities re-
duces the probability of making a positive location decision,
and this impact decreases with distance from competition.
Landscape and competition indices were developed in the
study, and combining these indices in a spatial-geographic
context derives a classification of Bopportunity zones^ for
potential users of woody cellulosic feedstocks [159].

Phase VI: An Economic Geospatial Analysis of SRWC
Short-rotation woody crops are part of the bioenergy solution
in the USA [160], especially in the Southeast where plantation
forestry is economical [116]. Currently, SRWC productivity is
not cost-effective; assessing optimal site locations for large
geographic regions is essential for lowering costs [9, 102,
111]. Short-rotation woody crops are ideal renewable feed-
stocks because they can be strategically located near conver-
sion facilities and provide ecological services, conserve soil
and water, recycle nutrients, and sequester carbon [65]. To that
end, the objective of phase VI was to improve the economic
assessments of SRWC based on the suitability of lands and
enhance the economic assessments in a geospatial context.
With BioSAT, the when and where of production and logistics
of SRWCswere identified to build efficiencies for profitability
and sustainability of biomass supply chains, assuming deploy-
ment in conjunction with potential facility locations. Risk
probabilities for SRWC production and processing locations
using Bayesian inference are unique to SRWC research. Site
requirements for four genera (Populus, Salix, Pinus, and
Eucalyptus) are defined that have the potential for large-
scale production. Soils, climatology, 3-PGmodeling, and land
cover data are developed and will be fused with existing
BioSAT model physiognomic, economic, and societal data
for 33 Eastern US states [161].

Phase VII: Modeling the Impact of the Emerging Bio-
economy on Transportation Network Flows with
Simulation and Bayesian Inference The impact of the
emerging bio-economy on transportation infrastructure and
related concerns is a top priority for the US Department of
Transportation and Southeastern Sun Grant Program. Phase
VII addressed this priority through modeling of specific im-
pacts of the emerging bio-economy on truck transportation
network flow for the Southern US. In phase VII, Bayesian
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logistic regression and GIS spatial analysis were applied to
estimate site locations for biorefineries in the presence of un-
certainty as related to resource competition, delivered costs at
the plant gate, and trucking transportation flow. Procurement
zones assumed a one-way haul distance of 129 km as a func-
tion of the available road network and interrelated resource as
estimated from the BioSAT model. Attributes such as median
family income, timberland annual growth-to-removal ratio,
and transportation delays were highly significant in influenc-
ing mill location. Transportation delays for trucks greatly im-
pacted the cost of trucking biomass resources. For example,
trucking costs increased 60 % in some areas of the Southern
USA. The logistic model using Bayesian inference was a good
model for predicting preferred site locations and identifying
non-preferred locations [162].

Carbon

Southeast Region

In the MAV, a region in which agricultural land use predom-
inates, interests in carbon (C) sequestration have played a
prominent role in the restoration of farmland to forests
[163]. In 1994, scientists and collaborators at the Center for
Bottomland Hardwoods Research in Stoneville, MS, initiated
work on the Sharkey Restoration Research and Demonstration
Site (32.96°N, 90.74°W), an area devoted to the study of
forest restoration on farmed bottomlands in the MAV
(Fig. 1) [164]. A primary focus of the research has been an
afforestation system inspired from knowledge of developmen-
tal patterns of natural eastern cottonwood stands [164]. The
eastern cottonwood–hardwood interplanting system provides
a novel approach for C sequestration on former agricultural
lands. Accumulation of above- and belowground biomass is
maximized by the eastern cottonwood nurse crop during the
initial stages of stand establishment and maintained through
the life of the stand by development of the slower-growing,
later-successional interplanted hardwoods. Modeling the C
balance of these plantations projects an annual C gain greater
than 9.0 Mg C ha−1 over a 100-year rotation. Ongoing long-
term research will enable further calibration of C storage
models for variation resulting from stand dynamics of various
cottonwood genotypes, stand densities, stand management al-
ternatives, and site productivity. However, demand from the C
economy has already led to private refinement and wide-scale
implementation of this plantation approach for the production
of verifiable forestry C offsets and renewable biomass
feedstock supplies [165].

Additional research on dedicated energy crop systems for
farmed bottomlands was initiated in 2011 to analyze the costs
and benefits associated with a range of production system
alternatives [35]. The study, established near Hollandale,

MS, in the MAV (Fig. 1), examines four planting densities
and associated harvest regimes of eastern cottonwood, includ-
ing: (1) 10,127 trees ha−1 with harvests in years 2, 4, 6, 8, and
10; (2) 6147 trees ha−1 with harvests in years 4, 7, and 10; (3)
1993 trees ha−1 with thinning in year 3 followed by complete
harvest with reestablishment in year 5; and (4) 745 trees ha−1

with harvest in year 10 [35]. Initial measurements on tree
establishment and growth, biomass accumulation, and soil
respiration are being analyzed to gain an understanding of
how plantation density and harvest regime impact biomass
yields and C balance on farmed bottomlands in the MAV [61].

North Central Region

Aboveground C storage potential is currently being tested
from the 10- and 20-year-old trees (n=198) belonging to the
ecosystem services network defined in the biomass section
above (Fig. 2). During felling, cross-sectional disks were har-
vested from each bole at 1.4-m height (i.e., DBH), 1/3 height
of the tree, and 2/3 height of the tree. The disks were oven-
dried at 55 °C until constant mass. One cross-sectional area of
each disk was sanded and the sanded disks were then cut in
half along a plane extending through the pith. Awafer, free of
bark and defects, was cut from one half-disk and sanded. For
each tree, three subsamples were collected from each growth
ring from each positional cross-sectional disk, resulting in
approximately 25,000 samples for analyses. Samples were
analyzed for total C using a Flash EA1112 N-C analyzer
(Thermo Electron, via CE Elantech, Inc., Lakewood, NJ) with
a model MAS 200 autosampler. Data analyses are currently
underway. In summary, the C concentrations of individual
samples ranged from 40.1 to 52.8 %, with an overall mean
of 47.2 %. For the 10-year-old trees, clone means ranged from
46.8 % (‘C916000’; P. deltoides×P. deltoides) to 48.5 %
(‘NM2’; P. nigra×P. suaveolens subsp. maximowiczii). For
the 20-year-olds, clone ‘DN34’ (P. deltoides×P. nigra) exhib-
ited a mean C concentration of 47.4 %, while ‘DN182’
(P. deltoides×P. nigra) had 47.2 %, on average. Stand-level
C storage across genotypes and sites of the 10-year-olds
ranged from 1.5 to 8.0 Mg C ha−1 year−1 (mean=4.2 Mg
C ha−1 year−1), while values for the older stands were
1.9–10.2 Mg C ha−1 year−1 (mean=5.5 Mg C ha−1 year−1)
[36]. Depending on specific genotype× environment interac-
tions, these results have substantial ecological and economic
practical implications when compared to the commonly ac-
cepted value of C comprising 50 % of wood [166]. For exam-
ple, at 10 years after planting, the Birdsey [166] estimate
would overestimate the mean C storage potential of all clones
by 3–6 %, regardless of where they were grown. Given the
broad genetic variability within the genus Populus [167–169],
generalizations for many traits should be used with caution,
and this is certainly true for C.

Bioenerg. Res. (2016) 9:465–491 481

Author's personal copy



Water

Hybrid Poplar

Chemical analysis of stable isotope ratios in tree growth rings
has been proven useful in evaluating water use efficiency
(WUE) in trees [170], as previous research has demonstrated
for various species including poplars and their hybrids
[171–173]. Despite the importance of this information for
species and genotype selection in the face of changing cli-
mates, a limited amount of information exists for hybrid pop-
lar in the USA. Therefore, as part of the ecosystem services
network described above (Fig. 2), theWUE of seven clones of
10-year-old hybrid poplars is being evaluated at three sites in
the North Central USA. The overarching objective is to iden-
tify genotypes with high WUE that are less susceptible to
water stress compared to those with low WUE [174], thereby
increasing the biomass yield potential on drier and/or water-
limited sites [172]. Wood samples from annual growth rings
were collected from the carbon wafers described above (i.e.,
carbon section) and analyzed for carbon isotope composition
(δ13C). These δ13C data are being analyzed to test for signif-
icant differences attributed to three genomic groups
[P. deltoides (pure species); (P. trichocarpa×P. deltoides)
× P. deltoides (first-generation backcross hybrids); and
P. nigra×P. suaveolens subsp. maximowiczii (F1 hybrid com-
mercial control)] (and, separately, genotypes), sites, and their
interactions. In addition, the δ13C data are being evaluated
together as covariates with climate and soil variables to further
improve our understanding of how genotype-specific WUE
interacts with site conditions to impact biomass yields and
associated ecosystem services. Preliminary data indicate that
the sites differed in terms of water stress, as general trends in
δ13C levels were apparent across sites and were consistent
across genotypes. The results also suggest the potential for
genetic selection based on WUE, as several genotypes exhib-
ited stable or increased growth rates under elevated water
stress (high WUE), whereas others exhibited reduced growth
under such conditions (Headlee et al., unpublished data).

Eucalypts

Water use of eucalypts has been a controversial issue interna-
tionally [175], and much has been made of the effect of
converting other land uses to Eucalyptus plantations.
Eucalypts have potentially higher water use and WUE com-
pared to pasture, pine plantations, and native forests. In addi-
tion, WUE is a major determinant of productivity [175].Water
use at the individual tree and stand levels varies significantly
among Eucalyptus clones and is not a constant characteristic
of a given genotype, but overall, eucalypts have similar WUE
to other tree species. Water consumption at the stand level
depends upon water availability and vapor pressure deficit.

Actual water use by eucalypts in a watershed depends on
many factors including the areal extent, size, spatial distribu-
tion, productivity, and age–class distribution of planted stands.
Studies in other countries suggest that water consumption by
Eucalyptus plantations will be higher in terms of percentage of
water supply in drier regions, but absolute water consumption
will be higher in wetter regions [175].

Ongoing modeling studies are examining the potential wa-
ter use of expanded Eucalyptus plantations in the South at the
tree, stand, and watershed levels. Ouyang et al. [176] modeled
hydrological processes and water use in a E. urophylla plan-
tation. They examined the potential impacts on water use of
wet and dry sandy soil conditions. The maximum rate of leaf
transpiration was about five times greater than that of soil
evaporation. The cumulative annual water use by the euca-
lypts was 3200 L tree−1. Vose et al. [177] focused on water
yield (Q) at the stand and the regional scales (12-digit
Hydrologic Unit Code watershed) in the Lower Coastal
Plain of the South where there is potential to expand freeze-
tolerant eucalypt plantations [8]. They found that at the stand
level, the Q for Eucalyptus was comparable to some pine
plantations or slightly reduced by 9–16 % of precipitation
(1300 mm year−1). This occurred at a leaf area index (LAI)
of 4. Greater reduction in Q occurred at higher productivity
levels, by as much as 500 mm year−1 (a reduction of 33–63 %
of precipitation) when the LAI was 5.

These studies suggest that predicted watershed-level re-
sponse to small and moderate amounts of land in Eucalyptus
plantations in the Southern USA may be difficult to detect.
Economic analysis indicates a 20 % conversion of conifer to
frost-tolerant eucalypts [8]. At this scale of conversion, reduc-
tions in water yield at the 12-digit HUC scale will be negligi-
ble. The variability in WUE among Eucalyptus clones sug-
gests a potential for breeding trees with improved WUE and
drought resistance, which could be important under future
climate and land uses that compete with forestry for available
water.

Mixed Species

Recent joint USDA FS–USDA Agricultural Research Service
(USDA ARS) partnerships extend beyond the scope of the
USA and North America. The USDA FS International
Programs (http://www.fs.fed.us/about-agency/international-
programs) has collaborated with the USAID Mission in
Cairo, Egypt, where the water resource is arguably the most
important ecosystem service. In short, since 2004, Egypt has
been developing wastewater reuse strategies for non-edible
crops (including trees grown along rural to urban gradients)
because they will not be able to meet the increasing water
demand from the Nile River, which supplies the country with
almost 97 % of its freshwater. Given the treaties with Sudan,
Egypt is limited to 55.5 billion m3 of Nile freshwater annually.
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Following the establishment of 24 forests designed to irrigate
the trees with treated wastewater, a joint USDA FS–USDA
ARS technical assistance team evaluated the feasibility of
scaling up similar afforestation projects in the country. In ad-
dition to the final report, the team evaluated strategies for
afforestation [178] and irrigation [179]. Six suitable tree gen-
era were identified based on soil characteristics and water
quality/quantity issues: (1) Populus, Pinus, and Eucalyptus
for pulpwood or sawnwood (versatile species); (2) Khaya
(mahogany) and Tectona (teak) for high-value products; and
(3) Gmelina (beechwood) for pulpwood [178]. Water quality
was a major component of the recommended silvicultural pre-
scriptions for successful biomass production using treated
wastewater outside of the Nile Delta. Two overarching con-
cerns for water quality improvement were identified: (1) mit-
igating return flow of treated wastewater back into Nile sur-
face waters and its tributaries and (2) mitigating deep perco-
lation losses into the alluvial aquifer as a result of irrigating the
sandy delta soils. Using the trees as filters to reduce subsurface
movement of nitrogen, phosphorus, and other potential pol-
lutants (e.g., heavy metals, salts) was also a consideration for
water quality improvements following irrigation [178]. To ad-
dress these collective concerns, Evett et al. [179] developed
irrigation strategies based on species’ water use requirements,
climate, and soil conditions. Given the high water use of
Populus, one pertinent outcome that can be applied to North
American poplar production systems is the potential increase
in irrigation frequency in order to meet the trees’ water re-
quirements without sustaining the aforementioned deep per-
colation losses and subsequent aquifer contamination [179],
especially in phytoremediation systems as described in
Zalesny et al. [94] of this special issue.

Soils and Wildlife Habitat Restoration

Soil protection and establishment of forest habitats for wildlife
are central thrusts of USDA conservation easement programs
available to owners of agricultural land. The infrastructure of
large-scale, forest restoration research established on the
Sharkey Restoration Research and Demonstration Site
(Fig. 1) has provided opportunity to examine soil develop-
ment and the development of forest habitats and wildlife use
in short-rotation eastern cottonwood plantations. Pre-
restoration measurement of soil variables including carbon,
nutrients, and bulk density enables future study of the trajec-
tory of soil recovery from agriculture [37]. Initial measure-
ments from the surface (0–7.5 cm) illustrated a 31 % loss in
soil N and a 33 % loss in soil carbon on this degraded agri-
cultural site [37]. At year 5, foliar N levels in eastern cotton-
wood were substantially lower than the levels required for
optimal biomass production, revealing persistence of soil nu-
trient depletion during early forest restoration [180]. Other

ecosystem functions responded more rapidly to the establish-
ment of eastern cottonwood forest cover. Hamel [181], who
studied winter bird use, reported that avian communities in 4-
to 6-year-old eastern cottonwood stands held twice as many
species as communities in stands of slower-growing hard-
woods. He concluded that the fast vertical growth of eastern
cottonwood stands, such as those established for bioenergy
purposes, facilitates a more rapid assembly of forest canopy
birds than stands of slower-growing trees [181]. Research
conducted to date supports the premise that biomass planta-
tions can play a role in the restoration and conservation of
biodiversity, particularly within landscapes such as the MAV
which is dominated by agricultural land use.

Research to Advance Other Genera

Efforts to develop SRWC systems in the Southern USA have
brought significant focus on plantation culture of several spe-
cies not previously covered in this manuscript. These efforts
were generally initiated to develop alternative plantation op-
tions for addressing particular site requirements, producing
desirable fiber or feedstock qualities, or providing for partic-
ular ecosystem services not offered by conventional plantation
species. American sycamore (Platanus occidentalis L.),
sweetgum, yellow poplar (Liriodendron tulipifera L.), black
locust (Robinia pseudoacacia L.), and green ash are among
the trees that have been investigated for plantation culture
because of their potential as alternatives to the currently uti-
lized plantation species [12, 182, 183]. Three broadleaf spe-
cies—American sycamore, sweetgum, and black willow
(Salix nigra Marshall)—are currently being studied by the
USDA FS Southern Research Station because they hold a
strong potential for future use in woody crop feedstock
production systems in the Southern USA.

American Sycamore and Sweetgum

For many decades, forest industry championed University of
Georgia and USDA FS research on American sycamore fiber
and feedstock production. This species demonstrates high pro-
ductivity on a wide range of upland and bottomland sites, it
has favorable pulping properties, and its biology is amenable
to intensive silviculture (i.e., it can be propagated from stem
cuttings and can be coppiced over several rotations) [12, 184].
This research investment led to substantial gains in appropri-
ate silvicultural practices, plantation system management, and
productivity [12].

In the southeastern USA, the growth and productivity of
sycamore and sweetgum grown with a range of water and
nutrient availability were evaluated in two separate experi-
ments on the Upper Coastal Plain of South Carolina. After
8 years, Coyle et al. [28] found that the optimal fertilization
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rates were 147 and 141 kg N ha−1 year−1 for irrigated and non-
irrigated sycamore, respectively. The productivity of syca-
more receiving irrigation was 6.5 dryMg aboveground woody
biomass per hectare per year, a 20% increase over the biomass
production rate without irrigation. In contrast, the optimal
fertilization rates for sweetgum differed with (85 kg N ha−1

year−1) and without (111 kg N ha−1 year−1) irrigation. The
aboveground woody biomass of sweetgum was 52 % greater
with compared to without irrigation.

A concurrent study examined sycamore and sweetgum
growth and productivity in a 2×2 factorial experiment with
and without irrigation and fertilization (0 or 120 kg N ha−1

year−1) [27]. After nine growing seasons, sycamore responded
significantly to both irrigation and fertilization, as above-
ground woody biomass productivity in trees receiving irriga-
tion and fertilization was 8.6 dry Mg ha−1 year−1; productivity
was 219 % greater compared to trees that received no resource
amendments (i.e., control) [30]. Sweetgum productivity was
21.3 dry Mg ha−1 year−1 in irrigated and fertilized treatments
after 11 growing seasons, and this rate was 344 % greater than
trees in the control plots [30]. After accounting for tree size,
the proportion of belowground biomass was not affected by
resource availability in sycamore, but decreased as resource
availability increased in sweetgum.

In spite of these positive gains, wide-scale use of American
sycamore in plantation culture has been impeded by chronic
disease problems [87]. Particularly problematic is the endemic
xylem disease bacterial leaf scorch, which is caused by the
pathogen Xylella fastidiosa Wells et al. and is transmitted to
American sycamore by a xylem-feeding insect, the glassy-
winged sharpshooter (Homalodisca vitripennis Germar)
[185]. Upon infection of the host, colonization of xylem vessels
by the bacterium leads to dysfunction of the vascular system
and water stress that results in leaf scorching, foliage dieback,
and tree decline [186]. Plantations in the Southern USA are
typically symptomatic a few years after establishment, with
progression to mortality within 5–7 years [187, 188].

Ongoing research is focused on traditional tree breeding to
address the bacterial leaf scorch issue. Adams et al. [67] iden-
tified American sycamore families that exhibit resistance to
bacterial leaf scorch and demonstrated that breeding for dis-
ease resistance can substantially decrease symptoms.
Concurrent investigation into the mechanism of disease resis-
tance indicates that the concentrations of certain glycosides
with known bactericidal efficacy on X. fastidiosa vary consid-
erably among American sycamore families (Leininger, per-
sonal communication). Indeed, glycoside concentration in
sycamore leaves was positively correlated with healthy,
asymptomatic trees (Leininger, personal communication). In
the future, American sycamore could account for a greater role
in biomass feedstock production if the breeding program cur-
rently focused on disease resistance is successful in producing
cultivars suitable for deployment.

Black Willow

Willows, particularly shrub willows, have gained prominent
use in short-rotation applications in several regions of the
world [189]. Black willow is a fast-growing tree species that
is endemic to alluvial forests throughout much of the Eastern
USA. This species exhibits relatively high productivity on
wet alluvial sites, is readily propagated through vegetative
reproduction, and can be regenerated through coppicing. For
these reasons, researchers have long recognized the potential
of black willow for genetic improvement and use as a biomass
species [190, 191], but this potential has not resulted in a
sustained effort to forward the species for plantation culture.
The current emphasis on the development of sustainable alter-
natives for biomass feedstock production and the availability
of alluvial land that is marginal for agricultural production
have created an opportunity for the development of black
willow as a plantation species [35, 58].

The USDA FS has initiated collaboration with re-
searchers at other organizations, including Mississippi
State University and Louisiana Tech University, in an ef-
fort to advance black willow as an alternative plantation
species for use on marginal agricultural land in alluvial
floodplains. Initial and ongoing research primarily ad-
dresses the development of sustainable plantation systems
and tree improvement. Experiments designed to provide
reliable planting stock and propagation techniques [62],
inform pest management practices [63], delineate planting
densities and rotation lengths that optimize productivity
[35], quantify carbon and nutrient life cycle dynamics
[61], and refine harvesting practices [38] are providing
the foundation for the development of sustainable black
willow plantation systems. Equally vital to sustainability
is the implementation of a tree improvement program that
can produce genetically superior cultivars suitable for op-
erational deployment into dedicated biomass plantations
on alluvial soils [58]. In 2009, researchers began collecting
genotypes from selected geographical sources and
established cutting orchards to replicate the genotypes for
intensive trials. Replicated clonal screening trials, early-
age selection, and clonal refinement tests on material from
10 geographic areas are demonstrating significant geo-
graphic source and clone variation [59, 60]. Ongoing
screening trials and refinement tests will identify the best-
performing clones for increased gain and eventually selec-
tion of superior genotypes for the production of biomass on
marginal agricultural land.

Future Research Directions

Four areas of continuing research are in progress to further
advance biomass, carbon, water, and soil research.
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1. Integrate energy, climate, and tree genetics to test the
physiological and environmental effects on biomass,
bioenergy, soil health, erosion control, and water quality
and quantity.

2. Develop quantitative genetic models to predict the out-
come of genotype×environment interactions as they af-
fect limits to the geographic transfer of clonal selections
and the design of environmental technologies, including
phytoremediation.

3. Develop silvicultural guidelines for the establishment and
growth of short-rotation woody crops, with special em-
phasis on genetic and environmental effects on rooting.

4. Enhance regional and national feedstock resource assess-
ments and economic analyses to integrate biomass pro-
ductivity models with carbon sequestration throughout
the energy supply chain.

Four areas of continuing research are in progress to further
extend BioSAT.

1. BioSAT for Kansas. The primary goal is to create a web-
accessible model for Kansas and its border states (i.e.,
Nebraska, Iowa, Missouri, Arkansas, and Oklahoma) to
evaluate agricultural, range, and forest locations for sus-
tainable biomass facilities.

2. Suitability indices for Washington, Oregon, Idaho, and
Montana in the Context of BioSAT. The goals are to (a)
create new tools that enable complex interactions within
the operations of the biomass supply chains to be studied
and refined and (b) facilitate a sustainable supply chain for
alternative aviation fuels using geospatial suitability over-
lays to screen for biomass production, secondary data
collection, and strategic analysis (e.g., key features of
the BioSAT model—land features and socioeconomic
factors).

3. Next-generation logistics systems for delivering optimal
biomass feedstocks to biorefining industries in the south-
eastern USA utilizing BioSAT. The goals are to (a) devel-
op and demonstrate a state-of-the-art biomass merchan-
dising and processing depot to identify and reduce sources
of variation along the supply chain of multiple high-
impact biomass sources (loblolly pine and switchgrass)
and (b) develop practices that manage biomass variability
to deliver a consistent feedstock optimized for perfor-
mance in specific technology platforms.

4. Natural Disaster Vulnerability Index (NDVI) in the con-
text of BioSAT. The primary goal is to integrate a spatially
explicit NDVI into the current web-based BioSATsystem,
wherein vulnerability refers to different variables that
make biomass-using facilities less able to absorb the im-
pact and recover from a disaster event [192, 193]. This
research is important for improving biomass and
bioenergy analysis by integrating risk visualization to help

recognize and reduce risk from potential natural disasters
for small-scale biomass supply chain operations.
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